分析 利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性求得g(x)的解析式,从而求得g(0)的值.
解答 解:将函数f(x)=sin2x的图象沿x轴向右平移φ(φ>0)个单位长度后得到函数g(x)=sin(2x-2φ)的图象,
若函数g(x)的图象关于y轴对称,则2φ=2kπ+$\frac{π}{2}$,k∈Z,∴φ的最小值为$\frac{π}{4}$,
g(x)=sin(2x-2φ)=sin(2x-$\frac{π}{2}$)=-cos2x,∴g(0)=-1,
故答案为:-1.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2011 | B. | 2012 | C. | 2013 | D. | 2014 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 10 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\;\frac{5}{4}\;,\;6\;)$ | B. | $(\;\frac{5}{3}\;,\;6\;)$ | C. | $(\;\frac{7}{5}\;,\;5\;)$ | D. | $(\;\frac{5}{4}\;,\;5\;)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m>0,则x2+x-m=0没有实根 | B. | 若m<0,则x2+x-m=0没有实根 | ||
| C. | 若m≤0,则x2+x-m=0有实根 | D. | 若m≤0,则x2+x-m=0没有实根 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com