精英家教网 > 高中数学 > 题目详情
7.设m∈R,命题:若m>0,则x2+x-m=0有实根的否命题是(  )
A.若m>0,则x2+x-m=0没有实根B.若m<0,则x2+x-m=0没有实根
C.若m≤0,则x2+x-m=0有实根D.若m≤0,则x2+x-m=0没有实根

分析 根据命题:若p,则q的否命题是:若¬p,则¬q,写出即可.

解答 解:设m∈R,命题:
若m>0,则x2+x-m=0有实根的否命题是:
若m≤0,则x2+x-m=0没有实根.
故选:D.

点评 本题考查了命题与它的否命题之间关系的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.将函数f(x)=sin2x的图象沿x轴向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)的图象关于y轴对称,则当φ取最小的值时,g(0)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点$P(\sqrt{3},1)$,Q(cosx,sinx),O为坐标原点,函数$f(x)=\overrightarrow{OP}•\overrightarrow{QP}$.
(1)求函数f(x)的解析式及最小正周期;
(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为$\frac{{3\sqrt{3}}}{4}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E,F分别是PB,PD的中点.
(Ⅰ)求证:PB∥平面FAC;
(Ⅱ)求三棱锥P-EAD的体积;
(Ⅲ)求证:平面EAD⊥平面FAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,$\sqrt{3}$sinx),x∈R,函数f(x)=$\overrightarrow{a}$•($\overrightarrow{a}$+2$\overrightarrow{b}$).
(1)求函数f(x)的最大值与单调递增区间;
(2)求使不等式f(x)≥2成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$sin(\frac{π}{2}+α)=\frac{1}{3}$,则cos(π-α)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}的前n项和为Sn,已知${a_1}=\frac{1}{2},{S_n}={n^2}{a_n}-n({n-1}),n=1,2,…$
(1)写出Sn与Sn-1的递推关系式(n≥2),并求出S2,S3的值;
(2)求Sn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.各项均为正数的等差数列{an}中,$3{a_6}-{a_7}^2+3{a_8}=0$,则a7=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆$C:\frac{x^2}{2}+{y^2}=1$的左焦点为F,不垂直于x轴且不过F点的直线l与椭圆C相交于A,B两点.
(1)如果直线FA,FB的斜率之和为0,则动直线l是否一定经过一定点?若过一定点,则求出该定点的坐标;若不过定点,请说明理由.
(2)如果FA⊥FB,原点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

同步练习册答案