精英家教网 > 高中数学 > 题目详情
5.直线$l:\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t为参数)与圆C:(x+6)2+y2=25交于A,B两点,且$|{AB}|=\sqrt{10}$,则直线l的斜率为±$\frac{\sqrt{15}}{3}$.

分析 直线$l:\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t为参数)与圆C:(x+6)2+y2=25联立,可得t2+12tcosα+11=0,|AB|=|t1-t2|=$\sqrt{10}$⇒(t1+t22-4t1t2=10,即可得出结论.

解答 解:直线$l:\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t为参数)与圆C:(x+6)2+y2=25联立,可得t2+12tcosα+11=0.
t1+t2=-12cosα,t1t2=11.
∴|AB|=|t1-t2|=$\sqrt{10}$⇒(t1+t22-4t1t2=10,⇒cos2α=$\frac{3}{8}$,tanα=±$\frac{\sqrt{15}}{3}$,
∴直线AB的斜率为±$\frac{\sqrt{15}}{3}$.
故答案为±$\frac{\sqrt{15}}{3}$.

点评 本题考查了直线参数方程及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在边长为a的等边三角形ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=$\frac{1}{2}$a,这时二面角B-AD-C的大小为(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设z=1+i(i是虚数单位),O为坐标原点,若复数$\frac{2}{z}+{z^2}$在复平面内对应的向量为$\overrightarrow{OZ}$,则向量$\overrightarrow{OZ}$的模是(  )
A.1B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={a1,a2,…,an},ai∈R,i=1,2,…,n,并且n≥2. 定义$T(A)=\sum_{1≤i<j≤n}{|{a_j}-{a_i}}|$(例如:$\sum_{1≤i<j≤3}{|{a_j}-{a_i}|}=|{a_2}-{a_1}|+|{a_3}-{a_1}|+|{a_3}-{a_2}|$).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N满足:N≠M,且T(M)=T(N),求出一个符合条件的N;
(Ⅱ)对于任意给定的常数C以及给定的集合A={a1,a2,…,an},求证:存在集合B={b1,b2,…,bn},使得T(B)=T(A),且$\sum_{i=1}^n{b_i}=C$.
(Ⅲ)已知集合A={a1,a2,…,a2m}满足:ai<ai+1,i=1,2,…,2m-1,m≥2,a1=a,a2m=b,其中a,b∈R为给定的常数,求T(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出的结果是(  )
A.98B.99C.100D.101

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E点,把△DEC沿CE折到D'EC的位置,使$D'A=2\sqrt{3}$,如图<2>:若G,H分别为D'B,D'E的中点.
(Ⅰ)求证:GH⊥AD';
(Ⅱ)求三棱锥D'-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C1的中心在坐标原点,两焦点分别为双曲线${C_2}:\frac{x^2}{2}-{y^2}=1$的顶点,直线$x+\sqrt{2}y=0$与椭圆C1交于A,B两点,且点A的坐标为$(-\sqrt{2},1)$,点P是椭圆C1上的任意一点,点Q满足$\overrightarrow{AQ}•\overrightarrow{AP}=0$,$\overrightarrow{BQ}•\overrightarrow{BP}=0$.
(1)求椭圆C1的方程;
(2)求点Q的轨迹方程;
(3)当A,B,Q三点不共线时,求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知两点$A(-\sqrt{2},0),B(\sqrt{2},0)$,动点P在y轴上的投影是Q,且$2\overrightarrow{PA}•\overrightarrow{PB}=|\overrightarrow{PQ}{|^2}$.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,a1=-1,an+1=2an+3n-1(n∈N*),则其前n项和Sn=2n+2-4-$\frac{3{n}^{2}+7n}{2}$.

查看答案和解析>>

同步练习册答案