精英家教网 > 高中数学 > 题目详情
7.已知F1、F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF1的中点在y轴上,若2∠PF1F2=∠F1PF2,那么椭圆的离心率为$\frac{\sqrt{5}-1}{2}$.

分析 由题意画出图形,结合三角形中位线定理可知PF2⊥x轴,又2∠PF1F2=∠F1PF2,则∠PF1F2=30°,再求解直角三角形可得椭圆的离心率.

解答 解:如图,

设线段PF1的中点为M,则OM∥PF2
∴PF2⊥x轴,
又2∠PF1F2=∠F1PF2,则∠PF1F2=30°,
∴sin30°=$\frac{P{F}_{2}}{{F}_{1}{F}_{2}}=\frac{\frac{{b}^{2}}{a}}{2c}=\frac{1}{2}$,得$e=\frac{c}{a}=\frac{\sqrt{5}-1}{2}$.
故答案为:$\frac{\sqrt{5}-1}{2}$.

点评 本题考查椭圆的简单性质,考查了数学转化思想方法和数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,已知四边形ABCD满足AD∥BC,AB=AD=CD=$\frac{1}{2}$BC=2,E是BC的中点,将△BAE沿AE折成△B1AE,使面B1AE⊥面AECD,F为棱B1D上一点.
(1)若F为B1D的中点,求证:B1D⊥面AEF;
(2)若B1E⊥AF,求二面角C-AF-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆16x2+25y2=400的长轴长为(  )
A.5B.10C.25D.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2sinx(sinx-cosx).
(1)求函数f(x)的最小正周期和最小值;
(2)若$A∈(0,\frac{π}{4})$,且$f(\frac{A}{2})=1-\frac{{4\sqrt{2}}}{5}$,求cosA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-2)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:4x+ay-5=0与直线l′:x-2y=0相互垂直,圆C的圆心与点(2,1)关于直线l对称,且圆C过点M(-1,-1).
(1)求直线l与圆C的方程;
(2)已知N(2,0),过点M作两条直线分别与圆C交于P,Q两点,若直线MP,MQ的斜率满足kMP+kMQ=0,求证:直线PQ的斜率为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=lnx-3ax有两个零点,则a的取值范围是(0,$\frac{1}{3e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.方程$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.$(θ为参数)所表示曲线的准线方程是$y=-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点分别为F1,F2,P为右支上一点,且|$\overrightarrow{{PF}_{1}}$|=8,$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0,则双曲线的离心率为(  )
A.3B.5C.$\sqrt{26}$D.$\frac{5}{4}$

查看答案和解析>>

同步练习册答案