【题目】设Sn为数列{an}的前n项和,若an>0,a1=1,且2Sn=an(an+t)(t∈R,n∈N*),则S100=_____.
【答案】5050
【解析】
先由题设条件求出t,再由2Sn=an(an+1)得2Sn﹣1=an﹣1(an﹣1+1),进而得出Sn,代入求S100.
∵an>0,a1=1,且2Sn=an(an+t)(t∈R,n∈N*),
∴当n=1,有2S1=a1(a1+t),即2=1+t,
解得:t=1.
∴2Sn=an(an+1)①,
又当n≥2时,有2Sn﹣1=an﹣1(an﹣1+1)②,
∴①﹣②可得:2(Sn﹣Sn﹣1)=an(an+1)﹣an﹣1(an﹣1+1),
整理得:an+an﹣1=an2﹣an﹣12,
∵an>0,
∴an﹣an﹣1=1.
所以数列{an}是以a1=1为首项,公差d=1的等差数列,
∴其前n项和Sn,
∴S1005050.
故答案为:5050.
科目:高中数学 来源: 题型:
【题目】德国数学家莱布尼兹于1674年得到了第一个关于π的级数展开式,该公式于明朝初年传入我国.我国数学家、天文学家明安图为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有《割圆密率捷法》一书,为我国用级数计算开创先河,如图所示的程序框图可以用莱布尼兹“关于的级数展开式计算的近似值(其中P表示的近似值)”.若输入,输出的结果P可以表示为( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列的前项中的最大项为,最小项为,设.
(1)若,求数列的通项公式;
(2)若,求数列的前项和;
(3)若数列是等差数列,求证:数列是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线焦点且倾斜角的直线与抛物线交于点的面积为.
(I)求抛物线的方程;
(II)设是直线上的一个动点,过作抛物线的切线,切点分别为直线与直线轴的交点分别为点是以为圆心为半径的圆上任意两点,求最大时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆的左,右焦点分别为,,点又恰为抛物线的焦点,以为直径的圆与椭圆仅有两个公共点.
(1)求椭圆的标准方程;
(2)若直线与相交于,两点,记点,到直线的距离分别为,,.直线与相交于,两点,记,的面积分别为,.
(ⅰ)证明:的周长为定值;
(ⅱ)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】水稻是人类重要的粮食作物之一,耕种与食用的历史都相当悠久,日前我国南方农户在播种水稻时一般有直播、撒酒两种方式.为比较在两种不同的播种方式下水稻产量的区别,某市红旗农场于2019年选取了200块农田,分成两组,每组100块,进行试验.其中第一组采用直播的方式进行播种,第二组采用撒播的方式进行播种.得到数据如下表:
产量(单位:斤) 播种方式 | [840,860) | [860,880) | [880,900) | [900,920) | [920,940) |
直播 | 4 | 8 | 18 | 39 | 31 |
散播 | 9 | 19 | 22 | 32 | 18 |
约定亩产超过900斤(含900斤)为“产量高”,否则为“产量低”
(1)请根据以上统计数据估计100块直播农田的平均产量(同一组中的数据用该组区间的中点值为代表)
(2)请根据以上统计数据填写下面的2×2列联表,并判断是否有99%的把握认为“产量高”与“播种方式”有关?
产量高 | 产量低 | 合计 | |
直播 | |||
散播 | |||
合计 |
附:
P(K2≥k0) | 0.10 | 0.010 | 0.001 |
k0 | 2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上以透空的感觉和艺术享受.在中国南北方的剪纸艺术,通过一把剪刀、一张纸、就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com