精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

(Ⅰ)(Ⅱ) 当时单调递增区间是,单调递减区间是,当时单调递增区间是,单调递减区间是,当时单调递增区间是 ,当时单调递增区间是,单调递减区间是 (Ⅲ)

解析试题分析:解:.                          1分
(Ⅰ),解得.                         3分
(Ⅱ).              4分
①当时,
在区间上,;在区间
的单调递增区间是,单调递减区间是.      5分
②当时,
在区间上,;在区间
的单调递增区间是,单调递减区间是.   6分
③当时,, 故的单调递增区间是.  7分
④当时,
在区间上,;在区间
的单调递增区间是,单调递减区间是.   8分
(Ⅲ)由已知,在上有.            9分
由已知,,由(Ⅱ)可知,
①当时,上单调递增,

所以,,解得,故.  10分
②当时,上单调递增,在上单调递减,

可知
所以,
综上所述,.                          12分
考点:函数导数的几何意义及函数单调性最值
点评:第一问利用导数的几何意义,将切线斜率转化为导数值,第二问在求单调区间时要对参数分情况讨论,从而解二次不等式得到不同的解集;第三问将不等式成立问题转化为求函数最值是函数综合题经常用到的转化思路

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数 (为常数)
(Ⅰ)=2时,求的单调区间;
(Ⅱ)当时,,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设l为曲线C:在点(1,0)处的切线.
(I)求l的方程;
(II)证明:除切点(1,0)之外,曲线C在直线l的下方

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,
(1)讨论的单调区间;
(2)若对任意的,且,有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极小值;
(Ⅱ)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)求函数在区间[0,3]上的最大值与最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数和“伪二次函数” .
(Ⅰ)证明:只要,无论取何值,函数在定义域内不可能总为增函数;
(Ⅱ)在同一函数图像上任意取不同两点A(),B(),线段AB中点为C(),记直线AB的斜率为k.
(1)对于二次函数,求证
(2)对于“伪二次函数” ,是否有(1)同样的性质?证明你的结论。

查看答案和解析>>

同步练习册答案