精英家教网 > 高中数学 > 题目详情
已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(1)=2,则f(2014)等于(  )
A、2014B、2C、0D、-2
考点:函数的周期性
专题:函数的性质及应用
分析:利用函数奇偶性的性质求出函数是周期函数即可得到结论.
解答: 解:∵f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,
∴可令x=-2,则f(-2+4)=f(-2)+f(2),
解得f(-2)=0,而f(-2)=-f(2),
∴f(2)=0.
∴f(x+4)=f(x).
∴f(2014)=f(503×4+2)=f(2)=0.
故选:C.
点评:本题考查了函数的奇偶性、周期性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|y=
x-4
2-x
},B={k|g(x)=
x2+x+1
kx2+kx+1
的定义域为R}
(1)若命题p:m∈A,命题q:m∈B,且“p且q”为假,“p或q”为真,试求实数m的取值范围.
(2)若f是A到B的函数,使得f:x→y=
2
x-1
,若a∈B,且a∉{y|y=f(x),x∈A},试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三梭锥P-ABC中,PA⊥底面ABC,PA=AB=2,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC
(1)当D为PB中点时,求AD与平面PAC所成角的正弦值;
(2)是否存在点E使得二面角A-DE-P为直二面角?说明理由,若有,求出PE的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个几何体的三视图,其中正视图与左视图都是全等的腰为
3
的等腰三角形,俯视图是边长为2的正方形,
(1)画出该几何体;
(2)求此几何体的表面积与体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在边长为1的正方形ABCD的一边上取一点E,使AE=
1
4
AD
,过AB的中点F作HF⊥EC于H.
(1)求证:FH=FA;
(2)求EH:HC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).
(1)求θ关于x的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+a).
(1)若0<f(1-2x)-f(x)<
1
2
,当a=1时,求x的取值范围;
(2)若定义在R上奇函数g(x)满足g(x+2)=-g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[-3,-2]上的反函数h(x);
(3)若关于x的不等式f(tx2-a+1)+f(
1
5-2x
-a)>0
在区间[
1
2
,2]
上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行四边形ABCD中,AE:EB=1:2,△AEF的面积为1cm2,则平行四边形ABCD的面积为
 
cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在(0,+∞)上为增函数的是(  )
A、y=(x-1)2
B、y=x2
C、y=(
1
2
x
D、y=
3
x

查看答案和解析>>

同步练习册答案