精英家教网 > 高中数学 > 题目详情
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x米,圆心角为θ(弧度).
(1)求θ关于x的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y,求y关于x的函数关系式,并求出x为何值时,y取得最大值?
考点:基本不等式在最值问题中的应用
专题:函数的性质及应用,不等式的解法及应用
分析:(1)利用扇形的弧长公式,结合环面的周长为30米,可求θ关于x的函数关系式;
(2)分别求出花坛的面积、装饰总费用,可求y关于x的函数关系式,换元,利用基本不等式,可求最大值.
解答: 解:(1)由题意,30=xθ+10θ+2(10-x),
∴θ=
10+2x
10+x
(0<x<10);
(2)花坛的面积为
1
2
•10•θ•10
-
1
2
•xθ•x
=
θ
2
(100-x2)
=(10-x)(5+x);
装饰总费用为xθ•9+10θ•9+2(10-x)•4=9xθ+90θ+8(10-x)=170+10x,
∴花坛的面积与装饰总费用的比为y=
(10-x)(5+x)
170+10x

令17+x=t,
则y=
39
10
-
1
10
(t+
324
t
)
3
10
,当且仅当t=18时取等号,此时x=1,θ=
12
11

∴当x=1时,y取得最大值
3
10
点评:本题考查利用数学知识解决实际问题,考查扇形的弧长公式,考查基本不等式的运用,确定函数模型是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
=(1,-2)
b
=(-3,1)
c0
是与
a
-
b
平行的单位向量,则
c0
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(x-a)(x-b)-2,(a<b),并且α,β是方程f(x)=0的两根,(α<β),则实数a,b,α,β大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,若a1+a5+a9=8π,则cos(a2+a8)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(1)=2,则f(2014)等于(  )
A、2014B、2C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)图中语文成绩的众数是
 

(2)图中a=
 

(3)若80分以上为优秀,则语文成绩有
 
个人优秀;
(4)根据频率分布直方图,估计这100名学生语文成绩的平均分解.

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=1-x,则关于x的方程f(x)=log9(x+1)解的个数是
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
5
x5-x4-4x3+7的极值点的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2mx+4n2(m∈R,n∈R).
(Ⅰ)若m从集合{0,1,2,3}中任取一个元素,n从集合{0,1,2,4}中任取一个元素,求方程f(x)=0有两个不相等实数根的概率;
(Ⅱ)若m从区间[0,4]中任取一个数,n从区间[0,6]中任取一个数,求方程f(x)=0没有实数根的概率.

查看答案和解析>>

同步练习册答案