精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2(x+a).
(1)若0<f(1-2x)-f(x)<
1
2
,当a=1时,求x的取值范围;
(2)若定义在R上奇函数g(x)满足g(x+2)=-g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[-3,-2]上的反函数h(x);
(3)若关于x的不等式f(tx2-a+1)+f(
1
5-2x
-a)>0
在区间[
1
2
,2]
上有解,求实数t的取值范围.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:(1)根据对数函数的真数部分大于0,及对数的运算性质,可将不等式0<f(1-2x)-f(x)<
1
2
,化为1<
2-2x
x+1
2
且2-2x>0且x+1>0,解不等式组可得x的取值范围;
(2)函数g(x)满足g(x+2)=-g(x),表示函数的周期为4,结合函数g(x)为奇函数,可求出x∈[-3,-2]时,函数g(x)的解析式,进而得到其反函数;
(3)利用对数函数的单调性及对数的运算性质,可将不等式f(tx2-a+1)+f(
1
5-2x
-a)>0
化为log2(tx2+1)>log2(5-2x),即tx2>4-2x,进而将其转化为最值问题,结合二次函数的图象和性质,可得实数t的取值范围
解答: 解:(1)原不等式可化为0<log2(2-2x)-log2(x+1)<
1
2
…(1分)
所以1<
2-2x
x+1
2
且2-2x>0且x+1>0…(2分)
3-2
2
<x<
1
3
…(2分)
(2)因为g(x)是奇函数,所以g(0)=0,得a=1…(1分)
当x∈[-3,-2]时,-x-2∈[0,1]g(x)=-g(x+2)=g(-x-2)=log2(-x-1)…(2分)
此时g(x)∈[0,1],x=-2g(x)-1,所以h(x)=-2x-1(x∈[0,1])…(2分)
(3)由题意log2(tx2+1)+log2
1
5-2x
>0
,…(1分)
log2(tx2+1)>log2(5-2x)…(1分)
所以不等式tx2>4-2x在区间[
1
2
,2]
上有解,
t>(
4
x2
-
2
x
)min=0
…(3分)
所以实数t的取值范围为(0,+∞)…(1分)
点评:本题考查的知识点是对数函数的图象和性质,函数的奇偶性,函数的周期性,函数的单调性,反函数,对数的运算性质,存在性问题,函数的最值,是函数图象和性质较为综合的应用,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为二次函数,f(0)=3,f(x+1)-f(x)=4x+2
(1)求f(x)的解析式;
(2)求f(x)在区间[-2,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的奇函数,对x∈R都有f(x+4)=f(x)+f(2)成立,若f(1)=2,则f(2014)等于(  )
A、2014B、2C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)是定义在R上的偶函数,且关于x的不等式f(x)<4x的解集为{x|1<x<3}.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设F(x)=f(x)+bx,且当x∈[-1,2]时,函数F(x)的最小值为1,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=1-x,则关于x的方程f(x)=log9(x+1)解的个数是
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

在[-6,9]内任取一个实数m,设f(x)=-x2+mx+m,则函数f(x)的图象与x轴有公共点的概率等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在R上定义运算:对x、y∈R,有x⊕y=2x+y,如果a⊕(3b)=1,(ab>0),则
1
a
⊕(
1
3b
)
的最小值是(  )
A、4
B、
32
3
C、9
D、
28
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设有关于x的一元二次方程x2+2ax+b2=0
(1)若a是从0,1,2,3四个数中任意取一个数,b是从0,1,2三个数中任意取一个,求上述方程有实根的概率;
(2)若a∈[0,2],b∈[0,1],求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案