精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)是定义在R上的偶函数,且关于x的不等式f(x)<4x的解集为{x|1<x<3}.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设F(x)=f(x)+bx,且当x∈[-1,2]时,函数F(x)的最小值为1,求实数b的值.
考点:二次函数的性质
专题:函数的性质及应用
分析:(I)不等式f(x)<4x的解集为{x|1<x<3},则a>0且x1=1,x2=3是方程f(x)-4x=0的两根,结合二次函数f(x)是定义在R上的偶函数和韦达定理,分别求出各项系数,可得f(x)的解析式;
(Ⅱ)分析函数F(x)=f(x)+bx的图象,并分类讨论区间[-1,2]与函数对称轴的关系,可得到x∈[-1,2]时,函数的单调性及最小值,进而求出相应的b值.
解答: 解:(I)设f(x)=ax2+bx+c(a≠0),由f(x)是偶函数知f(x)的图象关于y轴对称,
-
b
2a
=0
,即b=0,故f(x)=ax2+c.…(1分)
∵不等式f(x)<4x的解集为{x|1<x<3},
∴a>0且x1=1,x2=3是方程f(x)-4x=0即ax2-4x+c=0的两根.
由韦达定理,得
1+3=
4
a
1×3=
c
a

解得:a=1,c=3.…(5分)
∴f(x)=x2+3.…(6分)
(II)由( I)知,F(x)=x2+bx+3=(x+
b
2
)2+3-
b2
4
,对称轴x=-
b
2
.…(7分)
下面分类讨论:
①当-
b
2
≥2
,即b≤-4时,F(x)在[-1,2]上为减函数,
∴F(x)min=F(2)=2b+7=1,得b=-3(舍去).…(9分)
②当-
b
2
∈(-1,2)
,即-4<b<2时,F(x)min=F(-
b
2
)=-
b2
4
+3=1

b=-2
2
b=2
2
(舍去).…(11分)
③当-
b
2
≤-1
,即b≥2时,F(x)在[-1,2]上为增函数,
∴F(x)min=F(-1)=4-b=1,得b=3.…(13分)
综上所述,b=-2
2
或b=3为所求.…(14分)
点评:本题考查的知识点是二次函数的图象和性质,偶函数的性质,不等式解集与函数的零点及方程根的关系,是函数图象和性质的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若ABCD为正方形,E是CD的中点,则
AB
=
a
AD
=
b
,则
AE
=(  )
A、
1
2
a
+
b
B、
1
2
b
+
a
C、
1
2
a
-
b
D、
1
2
b
-
a

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+a|x-1|(a∈R),则对不同的实数a,函数f(x)的单调区间的个数有可能的是(  )
A、1个或2个
B、2个或3个
C、3个或4个
D、2个或4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在边长为1的正方形ABCD的一边上取一点E,使AE=
1
4
AD
,过AB的中点F作HF⊥EC于H.
(1)求证:FH=FA;
(2)求EH:HC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-(a-2)x+4是偶函数,则实数a的值为(  )
A、0B、4C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+a).
(1)若0<f(1-2x)-f(x)<
1
2
,当a=1时,求x的取值范围;
(2)若定义在R上奇函数g(x)满足g(x+2)=-g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[-3,-2]上的反函数h(x);
(3)若关于x的不等式f(tx2-a+1)+f(
1
5-2x
-a)>0
在区间[
1
2
,2]
上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲选做题)如图,已知点D在圆O直径AB的延长线上,过D作圆O的切线,切点为C.若CD=
3
,BD=1
,则圆O的面积为
 

(坐标系与参数方程选做题)在直角坐标系xOy中,曲线l的参数方程为
x=t
y=3+t.
(t
为参数);以原点O为极点,以x轴的正半轴为极轴建立极坐标系ρOθ,则曲线l的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆(x-1)2+(y-2)2=5的圆心到直线x-y+a=0的距离为
2
2
,则a的值为(  )
A、-2或2
B、
1
2
C、2或0
D、-2或0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点为A(0,3),B(1,5),C(3,-5).
(Ⅰ)求边AB所在的直线方程;     
(Ⅱ)求中线AD所在直线的方程.

查看答案和解析>>

同步练习册答案