精英家教网 > 高中数学 > 题目详情
16.已知f(x)是二次函数.若f(0)=0,f(x+1)=f(x)+x+1,
(1)求f(x)的解析式.
(2)若函数g(x)=f(x)+$\frac{1}{2}$x2+(2a-$\frac{1}{2}$)x+2,x∈[-5,5],求g(x)的最小值.

分析 (1)先设出函数f(x)的表达式,根据系数相等得到方程组,求出a,b的值即可;(2)先求出g(x)的表达式,通过讨论对称轴的位置,从而求出函数的最小值.

解答 解:(1)∵f(x)是二次函数,f(0)=0,
∴设函数的表达式是f(x)=ax2+bx,
则由f(x+1)=f(x)+x+1,
得:a(x+1)2+b(x+1)=ax2+bx+x+1,
∴ax2+(2a+b)x+a+b=ax2+(b+1)x+1,
∴$\left\{\begin{array}{l}{2a+b=b+1}\\{a+b=1}\end{array}\right.$,解得:a=b=$\frac{1}{2}$,
∴f(x)=$\frac{1}{2}$x2+$\frac{1}{2}$;
(2)由(1)得:
g(x)=f(x)+$\frac{1}{2}$x2+(2a-$\frac{1}{2}$)x+2,
=x2+2ax+2,x∈[-5,5],
对称轴x=-a,
当-a≤-5即a≥5时:g(x)在[-5,5]递增,
∴g(x)最小值=g(-5)=27-10a;
当-a≥5即a≤-5时:g(x)在[-5,5]递减,
∴g(x)最小值=g(5)=27+10a;
当-5<a<5时:g(x)最小值=g(-a)=2-a2

点评 本题考查了求函数的解析式问题,考查二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.比较大小:$\sqrt{5}$+$\sqrt{7}$与$\sqrt{10}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-4x+3,g(x)=mx+5-2m.若对任意的x1∈[2,4],总存在x2∈[1,4].使f(x1)=g(x2)成立.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解方程组:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=26}\\{xy=5}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x,y满足约束条件$\left\{\begin{array}{l}{3x+2y≤11}\\{y≤x+2}\\{x-5y≤3}\end{array}\right.$,目标函数z=3x+5y.
(1)使z取得最小值的最优解是否存在?若存在,请求出;
(2)请你改动约束条件中的一个不等式,使目标函数只有最大值而无最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC的外接圆半径为R,c=$\sqrt{2}$,且2R(sin2A-sin2C)=($\sqrt{2}$a-b)sinB(其中a,b分别为A,B的对边),那么R等于(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题错误的是(  )
①正、余弦定理适用除了直角三角形外的任何三角形;
②$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=2R,其中R是△ABC的内切圆半径;
③在三角形中,边的比等于其所对的角的比;
④在△ABC中,若a>b.则sinA>sinB;
⑤在△ABC中,sin(A+B)=sinC.
A.①②③B.①③④C.D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.实数x,y满足x-3$\sqrt{x+1}$=3$\sqrt{y+2}$-y,则x+y的最小值为$\frac{9+3\sqrt{21}}{2}$,最大值为9+3$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.y=f(x)定义域为R,且对任意x∈R都有f(x+1)=$\frac{f(x)+1}{1-f(x)}$,若f(2)=1-$\sqrt{2}$,则f(2009)=$-\sqrt{2}-1$.

查看答案和解析>>

同步练习册答案