精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,焦点在x轴上,离心率为数学公式,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)求m的取值范围.

解:(1)∵
,依题意设椭圆方程为:,把点(4,1)代入,得b2=5,
∴椭圆方程为.(5分)
(2)把y=x+m代入椭圆方程得:5x2+8mx+4m2-20=0,
∵直线l:y=x+m交椭圆于不同的两点A,B,
∴△=64m2-4×5(4m2-20)>0,整理得m2<25,
∴-5<m<5.(10分)
分析:(1)由椭圆的中心在原点,焦点在x轴上,离心率为=,可求得=,可设椭圆的方程为:,再把
点M(4,1),代入即可;
(2)把y=x+m代入椭圆方程,整理,利用△>0即可求得m的取值范围.
点评:本题考查直线与圆锥曲线的关系,着重考查待定系数法求椭圆的方程及方程思想与化归思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2
,且椭圆经过圆C:x2+y2-4x+2
2
y=0的圆心C.
(1)求椭圆的方程;
(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在坐标轴上,直线y=2x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,对称轴为坐标轴,左焦点为F1(-3,0),右准线方程为x=
253

(1)求椭圆的标准方程和离心率e;
(2)设P为椭圆上第一象限的点,F2为右焦点,若△PF1F2为直角三角形,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,一个焦点F1(0,-2
2
),且离心率e满足:
2
3
,e,
4
3
成等比数列.
(1)求椭圆方程;
(2)直线y=x+1与椭圆交于点A,B.求△AOB的面积.

查看答案和解析>>

同步练习册答案