精英家教网 > 高中数学 > 题目详情

设二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:
(1)当x∈R时,f(x-4)=f(2-x),且f(x)≥x:
(2)当x∈(0,2)时,f(x)≤数学公式
(3)f(x)在R上的最小值为0.
求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

解:因f(x-4)=f(2-x),则函数的图象关于x=-1对称,∴=-1,b=2a,
由(3),x=-1时,y=0,即a-b+c=0,由(1)得,f(1)≥1,由(2)得,f(1)≤1,
则f(1)=1,即a+b+c=1.又a-b+c=0,则b=,a=,c=,故f(x)=x2+x+
假设存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
取x=1,有f(t+1)≤1,即(t+1)2+(t+1)+≤1,解得-4≤t≤0,
对固定的t∈[-4,0],取x=m,有f(t+m)≤m,即(t+m)2+(t+m)+≤m.
化简有:m2-2(1-t)m+(t2+2t+1)≤0,解得1-t-≤m≤1-t+
故m≤1-t-≤1-(-4)+=9
当t=-4时,对任意的x∈[1,9],
恒有f(x-4)-x=(x2-10x+9)=(x-1)(x-9)≤0.
∴m的最大值为9.
解:∵f(x-4)=f(2-x)
∴函数的图象关于x=-1对称
b=2a
由③知当x=-1时,y=0,即a-b+c=0
由①得 f(1)≥1,由②得 f(1)≤1
∴f(1)=1,即工+了+以=1,又a-b+c=0
∴a=b=c=
∴f(x)=
假设存在t∈R,只要x∈[1,m],就有f(x+t)≤x
取x=1时,有f(t+1)≤1?(t+1)2+(t+1)+≤1?-4≤t≤0
对固定的t∈[-4,0],取x=m,有
f(t+m)≤m?(t+m)2+(t+m)+≤m?m2-2(1-t)m+(t2+2t+1)≤0?≤m≤
∴m≤=9 …
当t=-4时,对任意的x∈[1,9],恒有
f(x-4)-x=(x2-10x+9)=(x-1)(x-9)≤0
∴m的最大值为9. …
另解:∵f(x-4)=f(2-x)
∴函数的图象关于x=-1对称
b=2a
由③知当x=-1时,y=0,即a-b+c=0
由①得 f(1)≥1,由②得 f(1)≤1
∴f(1)=1,即工+了+以=1,又a-b+c=0
∴a=b=c=
∴f(x)==(x+1)2
由f(x+t)=(x+t+1)2≤x 在x∈[1,m]上恒成立
∴4[f(x+t)-x]=x2+2(t-1)x+(t+1)2≤0当x∈[1,m]时,恒成立
令 x=1有t2+4t≤0?-4≤t≤0
令x=m有t2+2(m+1)t+(m-1)2≤0当t∈[-4,0]时,恒有解 …
令t=-4得,m2-10m+9≤0?1≤m≤9 …
即当t=-4时,任取x∈[1,9]恒有
f(x-4)-x=(x2-10x+9)=(x-1)(x-9)≤0
∴mmax=9 …
分析:通过三个条件先求出函数解析式f(x)=x2+x+,只要x∈[1,m],就有f(x+t)≤x.那么当x=1时也成立确定出t的范围,然后研究当x=m时也应成立,利用函数的单调性求出m的最值.
点评:本题考查了函数的最值问题,以及利用函数单调性进行求解最值,考查了学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c满足f(-1)=0,对于任意的实数x都有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求证:a>0,c>0;
(3)当x∈(-1,1)时,函数g(x)=f(x)-mx,m∈R是单调的,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2
1
a
,且函数f(x)的图象关于直线x=x0对称,则有(  )
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足:当x=1时,f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在实数m,n,使x∈[m,n]时,函数的值域也是[m,n]?若存在,则求出这样的实数m,n;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+x+a(a>0),若f(m)<0,则有(  )

查看答案和解析>>

同步练习册答案