精英家教网 > 高中数学 > 题目详情
如图椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的上顶点为A,左顶点为B,F为右焦点,过F作平行与AB的直线交椭圆于C、D两点.作平行四边形OCED,E恰在椭圆上.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若平行四边形OCED的面积为
6
,求椭圆的方程.
(Ⅰ)∵焦点为F(c,0),AB斜率为
b
a
,故CD方程为y=
b
a
(x-c).与椭圆联立后消去y得2x2-2cx-b2=0.
∵CD的中点为G(
c
2
,-
bc
2a
),点E(c,-
bc
a
)在椭圆上,
∴将E(c,-
bc
a
)代入椭圆方程并整理得2c2=a2
∴e=
c
a
=
2
2

(Ⅱ)由(Ⅰ)知CD的方程为y=
2
2
(x-c),b=c,a=
2
c.
与椭圆联立消去y得2x2-2cx-c2=0.
∵平行四边形OCED的面积为:
S=c|yC-yD|=
2
2
c
(xC+xD)2-4xCxD

=
2
2
c
c2+2c2
=
6
2
c2=
6

∴c=
2
,a=2,b=
2

故椭圆方程为
x2
4
+
y2
2
=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,F1、F2分别为椭圆C的左、右焦点,若椭圆C的焦距为2.
(1)求椭圆C的方程;
(2)设M为椭圆上任意一点,以M为圆心,MF1为半径作圆M,当圆M与直线l:x=
a2
c
有公共点时,求△MF1F2面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2手11•浙江)设F1,F2分别为椭圆
x2
3
+y2=1的焦点,点A,B在椭圆上,若
F1A
=5
F2B
;则点A的坐标是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,A、B、C分别为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的顶点和焦点,若∠ABC=90°,则该椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,左焦点为E,右焦点为F,上顶点为B,若△BEF为等边三角形,则此椭圆的离心率为(  )
A.
5
+1
2
B.
5
-1
2
C.
1
2
D.2-
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
16
+
y2
9
=1的左、右焦点分别为F1、F2,过点F1的直线交椭圆于M、N两点,则△MNF2的周长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC为正三角形,点A,B为椭圆的焦点,点C为椭圆一顶点,则该三角形的面积与椭圆的四个顶点连成的菱形的面积之比为(  )
A.
1
2
B.
1
4
C.
3
2
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
2
+
y2
b2
=1
的焦点为F1,F2,两条准线与x轴的交点分别为M,N,若|MN|≤2|F1F2|,则该椭圆离心率取得最小值时的椭圆方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,P为直线x=-
3
2
a
上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为(  )
A.
1
2
B.
2
3
C.
3
4
D.
4
5

查看答案和解析>>

同步练习册答案