精英家教网 > 高中数学 > 题目详情
如图所示,在斜边为AB的Rt△ABC中,过APA⊥平面ABCAMPBM
ANPCN.

(1)求证:BC⊥面PAC
(2)求证:PB⊥面AMN.
(3)若PA=AB=4,设∠BPC=θ,试用tanθ表示△AMN的面积,当tanθ取何值时,△AMN的面积最大?最大面积是多少?
(1)证明:∵PA⊥平面ABCBC平面ABC.
PABC,又AB为斜边,∴BCACPAAC=A,∴BC⊥平面PAC.
(2)证明:∵BC⊥平面PACAN平面PAC  ∴BCAN,又ANPC,且BCPC=C
AN⊥面PBC,又PB平面PBC.∴ANPB
又∵PBAMAMAN=A,∴PB⊥平面AMN.
(3)解:在Rt△PAB中,PA=AB=4,∴PB=4
PMAB,∴AM=PB=2,∴PM=BM=2
又∵PB⊥面AMNMN平面AMN.∴PBMN,
MN=PM·tanθ=2tanθ,∵AN⊥平面PBCMN平面PBC.∴ANMN
AN=

∴当tan2θ=,即tanθ=时,SAMN有最大值为2,
∴当tanθ=时,SAMN面积最大,最大值为2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本题满分12分) 
如图,四棱锥的底面是正方形,侧面
是等腰三角形且垂直于底面,
分别是的中点。
(1)求证:
(2)求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点.
(1)求证:AF//平面PCE;
(2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在三棱锥P-ABC中,⊿PAB是等边三角形,D,E分别为AB,PC的中点.
(1)在BC边上是否存在一点F,使得PB∥平面DEF
(2)若∠PAC=∠PBC=90º,证明:AB⊥PC
(3)在(2)的条件下,若AB=2AC=求三棱锥P-ABC的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=

(Ⅰ)求面ASD与面BSC所成二面角的大小;
(Ⅱ)设棱SA的中点为M,求异面直线DM与SB所成角的大小;
(Ⅲ)求点D到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,已知四棱锥PABCD的底面是菱形,∠BCD=60°,点EBC边的中点,ACDE交于点OPO⊥平面ABCD.
(Ⅰ)求证:PDBC
(Ⅱ)若AB=6,PC=6,求二面角PADC的大小;
(Ⅲ)在(Ⅱ)的条件下,求异面直线PBDE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
在长方体的中点。
(1)求直线 
(2)作

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在四棱锥VABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为的等腰三角形,则二面角VABC的度数是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正的中线与中位线相交,
已知旋转过程中的一个
图形(不与重合).现给出下列四个命题:
①动点在平面上的射影在线段上;
②平面平面;                                                      
③三棱锥的体积有最大值;
④异面直线不可能垂直.其中正确的命题的序号是_________.

查看答案和解析>>

同步练习册答案