精英家教网 > 高中数学 > 题目详情
20.若4a=8,则a=$\frac{3}{2}$,若lg2+lgb=1,则b=5.

分析 根据对数的定义和对数的运算性质即可求出.

解答 解:4a=8,则a=log48=$\frac{lo{g}_{2}8}{lo{g}_{2}4}$=$\frac{3}{2}$,
由lg2+lgb=1,则lg2b=lg10,解得b=5,
故答案为:$\frac{3}{2}$,5

点评 本题考查了对数的运算性质和指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.椭圆$\frac{{x}^{2}}{{a}^{2}}$椭圆方程+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),离心率e=$\frac{\sqrt{3}}{2}$,P在椭圆上移动,△PF1F2面积最大值为$\sqrt{3}$(F1为左焦点,F2为右焦点)
(1)求椭圆方程;
(2)若A2(a,0),直线l过F1与椭圆交于M,N,求直线MN的方程,使△MA2N的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.Sn为{an}前n项和对n∈N*都有Sn=1-an,若bn=log2an,$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}<m$恒成立,则m的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数$y={log_2}({5+4x-{x^2}})$的单调递增区间是(-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(理) 如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.
(1)证明A1C⊥平面BED;
(2)求点A1到面BED的距离
(3)求二面角A1-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow m=(1,1)$,向量$\overrightarrow{m}$与向量$\overrightarrow{n}$的夹角为135°,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
(1)求$\overrightarrow{n}$;
(2)若$\overrightarrow n$与$\overrightarrow q=(1,0)$的夹角为$\frac{π}{2}$,$\overrightarrow p=(cosA,2{cos^2}\frac{C}{2})$,其中∠A,∠B,∠C为三角形三内角,$B=\frac{π}{2}$,求$|\overrightarrow p+\overrightarrow n|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列命题中真命题是(  )
A.若z1+z2=0,则z1,z2共轭B.若z1+z2=0,则${z_2},\overline{z_1}$共轭
C.若z1-z2=0,则z1,z2共轭D.若z1-z2=0,则${z_2},\overline{z_1}$共轭

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法中,正确的是(  )
A.命题“若am2<bm2,则a<b”的逆命题是真命题
B.已知x∈R,则“x2-2x-3=0”是“x=3”的必要不充分条件
C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”
D.命题p:?x∈R,x>sinx的否定形式为?x∈R,x≤sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知y=f(x)为二次函数,且f(0)=-5,f(-1)=-4,f(2)=-5,
(1)求此二次函数解析式.
(2)求函数f(x)在x∈[0,5]上的最大、最小值.

查看答案和解析>>

同步练习册答案