精英家教网 > 高中数学 > 题目详情
18.以椭圆C:$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1的焦点为焦点,经过直线x+y=9上一点P作椭圆C1,当椭圆C1的长轴长最小时,求椭圆C1的方程.

分析 作点F1(-2,0)关于l′的对称点F1′(9,11).设P是l′与椭圆的公共点,则2a=|PF1|+|PF2|=|PF′1|+|PF2|≥|F′1F2|=$\sqrt{170}$,即可求当C的长轴最短时,C的方程.

解答 解:依题意,F1(-2,0)、F2(2,0).
作点F1(-2,0)关于l:x+y=9的对称点F1′(9,11).
设P是l与椭圆的公共点,则2a=|PF1|+|PF2|=|PF′1|+|PF2|≥|F′1F2|=$\sqrt{170}$.
∴(2a)min=$\sqrt{170}$,
此时,a2=$\frac{85}{2}$,b2=a2-c2=$\frac{77}{2}$.
∴长轴最短的椭圆方程是$\frac{{x}^{2}}{\frac{85}{2}}+\frac{{y}^{2}}{\frac{77}{2}}$=1.

点评 本题考查直线与椭圆的位置关系,考查椭圆方程,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.直角坐标系xOy中,将曲线C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)经过伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$得到的曲线记为C2,曲线C3的方程为$\left\{\begin{array}{l}{x=k+1}\\{y=3-k}\end{array}\right.$(k为参数).
(1)写出曲线C2与C3的普通方程;
(2)设P,Q分别是曲线C2,C3上的动点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=$\sqrt{{2}^{{x}^{2}+2ax-a}-1}$的定义域为R,则实数a的取值范围是(  )
A.(-∞,-1]B.[-1,0]C.[0,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下列条件求抛物线的方程.
(1)焦点在x轴上,且焦点到准线距离为3;
(2)过点(-2,-3);
(3)以双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{10}$=1的焦点为焦点的抛物线方程;
(4)焦点在x-2y+4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.两平行直线3x+4y=10与6x+my=19的距离为$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁RP)∩Q={x|1<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若曲线C:f(x)=$\frac{alnx}{x}$(a≠0)在点(1,0)处的切线l的倾斜角为$\frac{π}{4}$.
(1)求a的值;
(2)求证:除切点(1,0)之外,曲线C在直线l的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过抛物线y2=4x的集点F作斜率为2的直线l,l交抛物线于A、B两点,求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知1<a<2,则下列各数中,最大的是(  )
A.log2aB.log2(log2a)C.(log2a)2D.log2$\sqrt{a}$

查看答案和解析>>

同步练习册答案