精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={a2 , a+1,﹣3},B={a﹣3,a2+1,2a﹣1}若A∩B={﹣3},求实数a的值.

【答案】解:∵A∩B={﹣3},∴﹣3∈B,a2+1≠﹣3,
∴当a﹣3=﹣3时,a=0,A={﹣3,0,1},B={﹣3,﹣1,1},
此时,A∩B={﹣3,1},与已知A∩B={﹣3}矛盾,不成立;
当2a﹣1=﹣3时,a=﹣1,满足A∩B={﹣3},
故a=﹣1
【解析】由A∩B={﹣3},得﹣3∈B,由此进行分类讨论,能求出实数a的值.
【考点精析】本题主要考查了集合的交集运算的相关知识点,需要掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业为了对新研发的一批产品进行合理定价,将产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:

已知

(1)求的值

(2)已知变量具有线性相关性,求产品销量关于试销单价的线性回归方程 可供选择的数据

(3)用表示(2)中所求的线性回归方程得到的与对应的产品销量的估计值。当销售数据对应的残差的绝对值时,则将销售数据称为一个“好数据”。试求这6组销售数据中的 “好数据”。

参考数据:线性回归方程中的最小二乘估计分别是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,g(x)=xlnx﹣a(x﹣1).
(1)求函数f(x)在点(4,f(4))处的切线方程;
(2)若对任意x∈(0,+∞),不等式g(x)≥0恒成立,求实数a的取值的集合M;
(3)当a∈M时,讨论函数h(x)=f(x)﹣g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )

A. 依次成公比为2的等比数列,且

B. 依次成公比为2的等比数列,且

C. 依次成公比为的等比数列,且

D. 依次成公比为的等比数列,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求甲以4比1获胜的概率;
(2)求乙获胜且比赛局数多于5局的概率;
(3)求比赛局数的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣5:不等式选讲)
已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当 时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,3)B(3,1),C(﹣1,0)求:
(1)求BC及BC边上的中线所在直线的方程;
(2)求BC边上的垂直平分线所在直线方程;
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是(

A.0.09
B.0.20
C.0.25
D.0.45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学玩游戏,对于给定的实数a1 , 按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a1乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把a1除以2后再加上12,这样就可以得到一个新的实数a2 , 对实数a2仍按上述方法进行一次操作,又得到一个新的实数a3 , 当a3>a1 , 甲获胜,否则乙获胜,若甲获胜的概率为 ,则a1的取值范围是(
A.(﹣∞,12]
B.[24,+∞)
C.(12,24)
D.(﹣∞,12]∪[24,+∞)

查看答案和解析>>

同步练习册答案