精英家教网 > 高中数学 > 题目详情
设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有2
Sn
=an+1

(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求数列{bn}的前2n+1项和T2n+1
分析:(I)由题设条件知当n=1时,(
a1
-1)2=0
,a1=1.当n=2时,
a2+1
=2
,a2=3.
(II)由2
Sn
=an+1
,知4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0.由此可知an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n)=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n],由此能够求出其结果.
解答:解:(I)当n=1时,2
a1
=a1+1

(
a1
-1)2=0
,a1=1
当n=2时,2
1+a2
=a2+1

a2+1
=2
,a2=3.
(II)∵2
Sn
=an+1

∴4Sn=(an+1)24Sn-1=(an-1+1)2,相减得:(an+an-1)(an-an-1-2)=0
∵{an}是正数组成的数列,
∴an-an-1=2,∴an=2n-1.
(Ⅲ)T2n+1=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)++(a2n+3n
=1+S2n+(3+32++3n)+[(-1)1+(-1)2++(-1)n]
=1+(2n)2+
3(1-3n)
1-3
+
(-1)(1-(-1)n)
1-(-1)

=
3n+1-2+8n2+(-1)n
2
点评:本题考查数列的综合运算,解题时要注意计算能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.
(1)写出数列{an}的前3项;
(2)求数列{an}的通项公式(写出推证过程);
(3)令bn=
1
2
(
an+1
an
+
an
an+1
)(n∈N)
,求
lim
n→∞
(b1+b2+…+bn-n)

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有4Sn=(an+1)2
(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求{bn}的前20项和T20

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,都有8Sn=(an+2)2
(1)写出数列{an}的前3项;
(2)求数列{an}的通项公式(写出推证过程);
(3)设bn=
4
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N+都成立的最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•东城区二模)设{an}是正数组成的等比数列,a1+a2=1,a3+a4=4,则a4+a5=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an } 是正数组成的数列,其前n项和为Sn,,所有的正整数n,满足
an+2
2
=
2S n

(1)求a1、a2、a3;    
(2)猜想数列{an }的通项公式,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案