精英家教网 > 高中数学 > 题目详情
精英家教网函数f(x)=Asinωx,(A>0,ω>0)的部分图象如图所示,则函数F(x)=[f(x)]2是(  )
A、周期为4的偶函数B、周期为4的奇函数C、周期为4π的偶函数D、周期为4π的奇函数
分析:根据图象把f(x)=Asinωx解出a与ω,然后求出F(x)解析式,化简为正弦余弦函数基本形式,直接判断周期.
解答:解:依题意,
A=2,
1
4
T=2?T=8=
ω

ω=
π
4

f(x)=2sin
π
4
x

F(x)=[f(x)]2=4sin2
π
4
x=2-2cos
π
2
x

∴它是周期为4的偶函数.
故选A
点评:本题考查余弦函数的奇偶性,以及三角函数的周期性及其求法,通过对函数的分析求出复合函数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2008)的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
π
2

(1)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;
(2)设a∈(0,
π
2
),则f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+?)(其中A>0,ω>0,|?|<
π
2
)的图象如图所示,为了得到y=2cos2x的图象,则只要将f(x)的图象)向
平移
π
12
π
12
个单位长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
4
)(其中x∈R,A>0,ω>0)的最大值为4,最小正周期为
3

(1)求函数f(x)的解析式;
(2)设a∈(
π
2
,π),且f(
2
3
a+
π
12
)=
1
2
,求cosa的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asinωx(A>0,ω>0)的部分图象如图所示,若△EFG是边长为2的正三角形,则f(1)=(  )
A、
6
2
B、
3
2
C、2
D、
3

查看答案和解析>>

同步练习册答案