精英家教网 > 高中数学 > 题目详情

【题目】

已知函数为自然对数的底数)

1)求的单调区间,若有最值,请求出最值;

2)是否存在正常数,使的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出的值,以及公共点坐标和公切线方程;若不存在,请说明理由.

【答案】(Ⅰ)所以当时,的单调递减区间为,单调递增区间为,最小值为,无最大值 ;

(Ⅱ)存在,使的图象有且只有一个公共点,且在该公共点处有共同的切线,易求得公共点坐标为,公切线方程为

【解析】

解:(1……61

恒成立

上是增函数,F只有一个单调递增区间(0-∞),没有最值…3

时,

,则上单调递减;

,则上单调递增,

时,有极小值,也是最小值,

…………6

所以当时,的单调递减区间为

单调递增区间为,最小值为,无最大值…………7

2)方法一,若的图象有且只有一个公共点,

则方程有且只有一解,所以函数有且只有一个零点…………8

由(1)的结论可知…………10

此时,

的图象的唯一公共点坐标为

的图象在点处有共同的切线,

其方程为,即…………13

综上所述,存在,使的图象有且只有一个公共点,且在该点处的公切线方程为…………14

方法二:设图象的公共点坐标为

根据题意得

高考资源网

,代入

从而…………10

此时由(1)可知

时,

因此除外,再没有其它,使…………13

故存在,使的图象有且只有一个公共点,且在该公共点处有共同的切线,易求得公共点坐标为,公切线方程为…………14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆:的左右焦点分别是,抛物线与椭圆有相同的焦点,点为抛物线与椭圆在第一象限的交点,且满足

(1)求椭圆的方程;

(2)与抛物线相切于第一象限的直线,与椭圆交于两点,与轴交于点,线段的垂直平分线与轴交于点,求直线斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,△ABE和△BCF均为正三角形,在三棱锥中:

(I)证明:平面 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)若点在棱上,满足 ,点在棱上,且的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】10名选手参加某项诗词比赛,计分规则如下:比赛共有6道题,对于每一道题,10名选手都必须作答,若恰有个人答错,则答对的选手该题每人得分,答错选手该题不得分.比赛结束后,关于选手得分情况有如下结论:

①若选手甲答对6道题,选手乙答对5道题,则甲比乙至少多得1分:

②若选手甲和选手乙都答对5道题,则甲和乙得分相同;

③若选手甲的总分比其他选手都高,则甲最高可得54

其中正确结论的个数是(

A.0B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnxax)有两个极值点,则实数a的取值范围是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 某创业投资公司拟投资开发某种新能源产品,估计能获得25万元~ 1600万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,奖金不超过75万元,同时奖金不超过投资收益的20%(:设奖励方案函数模型为y=f (x)时,则公司对函数模型的基本要求是:x[251600]时,①f(x)是增函数;f (x) 75恒成立; 恒成立.

(1)判断函数是否符合公司奖励方案函数模型的要求,并说明理由;

(2)已知函数符合公司奖励方案函数模型要求,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与y轴垂直.

1)若,求的单调区间;

2)若成立,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点上的点,满足.

1)当点在圆上运动时,求点的轨迹方程;

2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,为等腰直角三角形,,设点中点,点中点,点上一点,且

(1)证明:平面

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案