【题目】已知函数
在点
处的切线与y轴垂直.
(1)若
,求
的单调区间;
(2)若
,
成立,求a的取值范围
【答案】(1)见解析;(2)![]()
【解析】
(1)令f′(1)=0求出b,再根据f′(x)的符号得出f(x)的单调区间;
(2)分类讨论,分别求出
在(0,e)上的最小值,即可得出a的范围.
(1)
,由题
,
解得
,由
,得
.
因为
的定义域为
,所以
,
故当
时,
,
为增函数,
当
时,
,
为减函数,
(2)由(1)知
,
所以![]()
(ⅰ)若
,则由(1)知
,即
恒成立
(ⅱ)若
,则
且![]()
故当
时,
,
为增函数,
当
时,
,
为减函数,
,即
恒成立
(ⅲ)若
,则
且![]()
故当
时,
,
为增函数,
当
时,
,
为减函数,
由题只需
即可,即
,解得
,
而由
,且
,
得
(ⅳ)若
,则
,
为增函数,且
,
所以
,
,不合题意,舍去;
(ⅴ)若
,则
,
在
上都为增函数,且![]()
所以
,
,不合题意,舍去;
综上所述,a的取值范围是![]()
科目:高中数学 来源: 题型:
【题目】某公司的营销部门对某件商品在网上销售情况进行调查,发现当这件商品每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过统计得到以下表:
![]()
(1)经分析发现,可用线性回归模型拟合该商品销量
(百件)与返还点数
之间的相关关系.请用最小二乘法求
关于
的线性回归方程
,并预测若返回6个点时该商品每天销量;
(2)该公司为了在购物节期间对所有商品价格进行新一轮调整,随机抽查了上一年购物节期间60名网友的网购金额情况,得到如下数据统计表:
网购金额 (单位:千元) |
|
|
|
|
|
| 合计 |
频数 | 3 | 9 | 9 | 15 | 18 | 6 | 60 |
若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”.该营销部门为了进步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查.设
为选取的3人中“网购达人”的人数,求
的分布列和数学期望.
参考公式及数据:①
,
;②
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实数
使得
则称
是区间
的
一内点.
(1)求证:
的充要条件是存在
使得
是区间
的
一内点;
(2)若实数
满足:
求证:存在
,使得
是区间
的
一内点;
(3)给定实数
,若对于任意区间
,
是区间的
一内点,
是区间的
一内点,且不等式
和不等式
对于任意
都恒成立,求证:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,其长轴长是短轴长的
倍,过焦点且垂直于
轴的直线被椭圆截得的弦长为
.
![]()
(1)求椭圆
的方程;
(2)点
是椭圆
上横坐标大于
的动点,点
在
轴上,圆
内切于
,试判断点
在何位置时
的长度最小,并证明你的判断.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线
的焦点作直线交抛物线于
,
两点,若
,则
的值为( )
A. 10 B. 8 C. 6 D. 4
【答案】B
【解析】
根据过抛物线焦点的弦长公式,利用题目所给已知条件,求得弦长
.
根据过抛物线焦点的弦长公式有
.故选B.
【点睛】
本小题主要考查过抛物线焦点的弦长公式,即
.要注意只有过抛物线焦点的弦长才可以使用.属于基础题.
【题型】单选题
【结束】
10
【题目】已知椭圆
:
的右顶点、上顶点分别为
、
,坐标原点到直线
的距离为
,且
,则椭圆
的方程为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆
和抛物线
有相同的焦点
,椭圆
过点
,抛物线
的顶点为原点.
![]()
求椭圆
和抛物线
的方程;
设点P为抛物线
准线上的任意一点,过点P作抛物线
的两条切线PA,PB,其中A,B为切点.
设直线PA,PB的斜率分别为
,
,求证:
为定值;
若直线AB交椭圆
于C,D两点,
,
分别是
,
的面积,试问:
是否有最小值?若有,求出最小值;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数
满足不等式
;
命题q:关于
不等式
对任意的
恒成立.
(1)若命题
为真命题,求实数
的取值范围;
(2)若“
”为假命题,“
”为真命题,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com