【题目】设命题p:实数
满足不等式
;
命题q:关于
不等式
对任意的
恒成立.
(1)若命题
为真命题,求实数
的取值范围;
(2)若“
”为假命题,“
”为真命题,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x2-ax)ex(x∈R),a为实数.
(1)当a=0时,求函数f(x)的单调增区间;
(2)若f(x)在闭区间[-1,1]上为减函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
(
),左、右焦点分别是
、
且
,以
为圆心,3为半径的圆与以
为圆心,1为半径的圆相交于椭圆
上的点![]()
(1)求椭圆
的方程;
(2)设椭圆
:
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
两点,射线
交椭圆
于点![]()
①求
的值;
②令
,求
的面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定圆
:
,其圆心为
,点
为圆
所在平面内一定点,点
为圆
上一个动点,若线段
的中垂线与直线
交于点
,则动点
的轨迹可能为______.(写出所有正确的序号)(1)椭圆;(2)双曲线;(3)抛物线;(4)圆;(5)直线;(6)一个点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,12月1日至12月5日的昼夜温差与实验室每天每100颗种子中的发芽数如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2组数据的概率.
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求y关于x的线性回归方程
.
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com