精英家教网 > 高中数学 > 题目详情
10.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若$\frac{a}{sinB}$+$\frac{b}{sinA}$=2c,则∠A的大小为$\frac{π}{4}$.

分析 由$\frac{a}{sinB}$+$\frac{b}{sinA}$=2c,利用正弦定理可得:$\frac{sinA}{sinB}+\frac{sinB}{sinA}$=2sinC,再利用基本不等式的性质可得sinC=1,即可得出.

解答 解:由正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,
又$\frac{a}{sinB}$+$\frac{b}{sinA}$=2c,
∴$\frac{sinA}{sinB}+\frac{sinB}{sinA}$=2sinC≥2,当且仅当sinA=sinB时取等号.
而sinC≤1,
∴sinC=1,又C∈(0,π).
∴C=$\frac{π}{2}$.
又sinA=sinB,∴A=B=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.

点评 本题考查了正弦定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某地拟建一座长为640米的大桥AB,假设桥墩等距离分布,经设计部门测算,两端桥墩A、B造价总共为100万元,当相邻两个桥墩的距离为x米时(其中64<x<100),中间每个桥墩的平均造价为$\frac{80}{3}\sqrt{x}$万元,桥面每1米长的平均造价为(2+$\frac{x\sqrt{x}}{640}$)万元.
(1)试将桥的总造价表示为x的函数f(x);
(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩A、B除外)应建多少个桥墩?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A、B、C的对边分别为a、b、c,B=$\frac{π}{3}$.
(1)若b=3,2sinA=sinC,求a,c;
(2)若sinAsinC=$\frac{1}{2}$,且△ABC的面积为2$\sqrt{3}$,求b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{x}{lnx}$+ax,x>1.
(Ⅰ)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ)若a=2,求函数f(x)的极小值;
(Ⅲ)若存在实数a使f(x)在区间(${e^{\frac{1}{n}}},{e^n}$)(n∈N*,且n>1)上有两个不同的极值点,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一汽车厂生产A,B,C三类轿车,某月的产量如下表(单位:辆):
类别ABC
数量400600a
按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求a的值;
(Ⅱ)用分层抽样的方法在A,B类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆A类轿车的概率;
(Ⅲ)用随机抽样的方法从A,B两类轿车中各抽取4辆,进行综合指标评分,经检测它们的得分如图,比较哪类轿车综合评分比较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图是一个几何体的三视图,则这个几何体的表面积为24+π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(sin$\frac{π}{8}$,cos$\frac{π}{8}$),则sin(2α-$\frac{π}{12}$)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知三棱柱ABC-A1B1C1,O、O1为棱AB、A1B1的中点,OC1=O1C,且CB=CC1=CA.
(1)证明:平面ABB1A1⊥平面C1COO1
(2)若OB1=OA1,∠CBA=30°,求二面角C1-OB1-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z为纯虚数,若(3-i)z=a+i(i为虚数单位),则实数a的值为(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案