精英家教网 > 高中数学 > 题目详情
17.已知数列{an}满足:a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=1+$\frac{{a}_{n}}{(n+1)^{2}}$(n∈N*).
(1)证明:an+1≥an+$\frac{{a}_{n}}{(n+1)^{2}}$;
(2)证明:$\frac{2}{n+3}$<$\frac{{a}_{n+1}}{n+1}$<1.

分析 (1)由a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=1+$\frac{{a}_{n}}{(n+1)^{2}}$(n∈N*),可得an+1>an>a1>1.作差an+1-an=$\frac{{a}_{n}^{2}}{(n+1)^{2}}$-$\frac{{a}_{n}}{(n+1)^{2}}$=$\frac{{a}_{n}({a}_{n}-1)}{(n+1)^{2}}$即可证明.
(2)$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n+1}{a}_{n}}$=$\frac{1}{(n+1)^{2}}$$•\frac{{a}_{n}}{{a}_{n+1}}$,由$0<\frac{{a}_{n}}{{a}_{n+1}}$<1,可得$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$<$\frac{1}{(n+1)^{2}}$$\frac{1}{n}-\frac{1}{n+1}$.利用“累加求和”可得右边成立.另一方面:由an≤n,原式变形为:$\frac{{a}_{n+1}}{{a}_{n}}$=1+$\frac{{a}_{n}}{(n+1)^{2}}$≤1+$\frac{n}{(n+1)^{2}}$<$\frac{n+2}{n+1}$.即可证明左边.

解答 证明:(1)∵a1=1,$\frac{{a}_{n+1}}{{a}_{n}}$=1+$\frac{{a}_{n}}{(n+1)^{2}}$(n∈N*),a2=1+$\frac{1}{{2}^{2}}$>1,同理可得an+1>an>a1>1.
∴an+1-an=$\frac{{a}_{n}^{2}}{(n+1)^{2}}$-$\frac{{a}_{n}}{(n+1)^{2}}$=$\frac{{a}_{n}({a}_{n}-1)}{(n+1)^{2}}$>0,
∴an+1≥an+$\frac{{a}_{n}}{(n+1)^{2}}$.
(2)$\frac{{a}_{n+1}-{a}_{n}}{{a}_{n+1}{a}_{n}}$=$\frac{1}{(n+1)^{2}}$$•\frac{{a}_{n}}{{a}_{n+1}}$,∴$0<\frac{{a}_{n}}{{a}_{n+1}}$<1,
∴$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$<$\frac{1}{(n+1)^{2}}$<$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
利用“累加求和”可得:$\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}}$<1-$\frac{1}{n+1}$,可得an+1<n+1.
另一方面:由an≤n,原式变形为:$\frac{{a}_{n+1}}{{a}_{n}}$=1+$\frac{{a}_{n}}{(n+1)^{2}}$≤1+$\frac{n}{(n+1)^{2}}$<1+$\frac{1}{n+1}$=$\frac{n+2}{n+1}$.
∴$\frac{{a}_{n}}{{a}_{n+1}}>$$\frac{n+1}{n+2}$,∴$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$>$\frac{1}{(n+1)^{2}}•\frac{n+1}{n+2}$=$\frac{1}{n+1}-\frac{1}{n+2}$.
∴利用“累加求和”可得:$\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}}$$>\frac{1}{2}$-$\frac{1}{n+1}$,可得an+1>$\frac{2(n+1)}{n+3}$.
综上可得:$\frac{2}{n+3}$<$\frac{{a}_{n+1}}{n+1}$<1.

点评 本题考查了数列的单调性、“放缩法”、不等式的性质、“裂项求和”方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=(  )
A.{0}B.{1}C.{0,1}D.{0,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=2f′(1)lnx-x,则f′(1)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.A,B,C,D四点都在一个球面上,AB=AC=AD=$\sqrt{2}$,且AB,AC,AD两两垂直,则该球的表面积为(  )
A.B.$\sqrt{6}π$C.12πD.$2\sqrt{6}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等比数列{an}中,a2=2,a5=16,记{an}的前n项和为Sn,则S10=(  )
A.1024B.1023C.2048D.2046

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于z的实系数一元二次方程z2+5z+a=0的两个复数根为α、β,试用实数a表示|α|+|β|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知幂函数f(x)的图象经过点(2,$\frac{1}{4}$),则f($\frac{1}{2}$)的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=ax2+bx+c,x∈[-2a-5,1]是偶函数,则a+b=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知y=f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,则满足条件f(m)<f(3)的实数m的范围是(-3,3).

查看答案和解析>>

同步练习册答案