| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{4\sqrt{3}}}{3}$ | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
分析 根据抛物线的定义,不难求出,|AB|=2|AE|,由抛物线的对称性,不妨设直线的斜率为正,所以直线AB的倾斜角为60°,可得直线AB的方程,与抛物线的方程联立,求出A,B的坐标,即可求出△AOB的面积.
解答
解:如图所示,根据抛物线的定义,不难求出,|AB|=2|AE|,由抛物线的对称性,不妨设直线的斜率为正,所以直线AB的倾斜角为60°,直线AB的方程为y=$\sqrt{3}$(x-1),
联立直线AB与抛物线的方程可得A(3,2$\sqrt{3}$),B($\frac{1}{3}$,-$\frac{2\sqrt{3}}{3}$),
所以|AB|=$\sqrt{(3-\frac{1}{3})^{2}+(2\sqrt{3}+\frac{2\sqrt{3}}{3})^{2}}$=$\frac{16}{3}$,
而原点到直线AB的距离为d=$\frac{\sqrt{3}}{2}$,
所以S△AOB=$\frac{1}{2}×\frac{16}{3}×\frac{\sqrt{3}}{2}=\frac{4\sqrt{3}}{3}$,
当直线AB的倾斜角为120°时,同理可求.
故选B.
点评 本题考查抛物线的简单几何性质,考查直线与抛物线的相交问题,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 各三角形内一点 | B. | 各正三角形的中心 | ||
| C. | 各正三角形的某高线上的点 | D. | 各正三角形外的某点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com