精英家教网 > 高中数学 > 题目详情
2.已知△ABC的三个角A,B,C的对边分别为a,b,c,且A,B,C成等差数列,且b=$\sqrt{3}$.数列{an}是等比数列,且首项a1=$\frac{1}{2}$,公比为$\frac{sinA}{a}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=-$\frac{lo{g}_{2}{a}_{n}}{{a}_{n}}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)由△ABC的三个角A,B,C成等差数列,求得B,由正弦定理求出公比;
(Ⅱ)${b_n}=-\frac{{{{log}_2}{a_n}}}{a_n}=n•{2^n}$,由错位相加法求和.

解答 解:(Ⅰ)∵△ABC的三个角A,B,C成等差数列,∴B=60°,
$\frac{sinA}{a}=\frac{sinB}{b}=\frac{1}{2}$,an=$\frac{1}{{2}^{n}}$.
(Ⅱ)${b_n}=-\frac{{{{log}_2}{a_n}}}{a_n}=n•{2^n}$
 ${S_n}=1×2+2×{2^2}+…+n×{2^n}$;
 2${S_n}=1×{2^2}+2×{2^3}+…+(n-1)×{2^n}+n×{2^{n+1}}$
-sn=2+22+23+…+2n-n•2n+1=2n+1-2--n•2n+1=(1-n)•2n+1-2
则sn=(n-1)•2n+1+2.

点评 本题考查了等比数列的通项,错位相减法求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知抛物线y2=4x的焦点为F,A、B,为抛物线上两点,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,O为坐标原点,则△AOB的面积为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等比数列{an}中,a2=2,a4=8,数列{bn}满足:b1=-1,bn+1=bn+(2n-1).
(1)求数列{an}和数列{bn}的通项公式;
(2)若cn=$\frac{{{a_n}{b_n}}}{n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,函数$y={|x|^{\frac{1}{3}}}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.用二分法求函数f(x)=3x-x-4的零点时,其参考数据如下
f(1.6000)=0.200f(1.5875)=0.133f(1.5750)=0.067
f(1.5625)=0.003f(1.5562)=-0.029f(1.5500)=-0.060
据此数据,可得f(x)=3x-x-4的一个零点的近似值(精确到0.01)为(  )
A.1.55B.1.56C.1.57D.1.58

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.周长为9,圆心角为1rad的扇形面积为(  )
A.$\frac{9}{2}$B.$\frac{9}{4}$C.πD.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\sqrt{2{x}^{2}-3x-2}$的单调递减区间为(-∞,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数 $f(x)=\frac{2}{x}+lnx$,则(  )
A.$x=\frac{1}{2}$ 为 f(x)的极大值点B.$x=\frac{1}{2}$为f(x)的极小值点
C.x=2 为 f(x)的极大值点D.x=2为f(x)的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.秦九韶,中国古代数学家,对中国数学乃至世界数学的发展做出了杰出贡献.世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则.美国著名科学史家萨顿(G•Sarton,1884-1956)说过,秦九韶是“他那个民族,他那个时代,并且确实也是所有时代最伟大的数学家之一“.他所创立的秦九韶算法,直到今天,仍是多项式求值比较先进的算法.尤其是他本人做梦都没想到的是可以用计算机算法编写程序,减少CPU运算时间.请你解决下面一题:已知一个5次多项式为f(x)=4x5+2x4+3.5x3-2.6x2+1.7x+0.8,用秦九韶算法求这个多项式当x=5时的值为14131.8.

查看答案和解析>>

同步练习册答案