精英家教网 > 高中数学 > 题目详情
已知α是锐角,且tan(α+
π
4
)=2.求:
(1)tanα的值.
(2)
sin2α•cosα-sinα
sin2α•cos2α
的值.
分析:(1)利用两角和的正切公式将tan(α+
π
4
)=2的左端展开,即可求得tanα的值;
(2)由tanα=
sinα
cosα
=
1
3
及sin2α+cos2α=1并注意到α是锐角,可求得cosα=
3
10
,从而将所求关系式化简整理,即可求得答案.
解答:解:由tan( α+
π
4
)=
tanα+1
1-tanα
=2,
解得tanα=
1
3
.…(3分)
(2)由tanα=
sinα
cosα
=
1
3
及sin2α+cos2α=1并注意到α是锐角,
得cosα=
3
10
.…(7分)
sin2α•cosα-sinα
sin2α•cos2α
=
2sinα•cos2α-sinα
2sinα•cosα•cos2α
…(9分)
=
sinα•(2cos2α-1)
2sinα•cosα•cos2α
=
1
2cosα
=
10
6
.…((12分)
点评:本题考查两角和与差的正切函数,着重考查三角函数的化简求值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α是锐角,且tan(α+
π
4
)=3,求
sin2α•cos(α+π)-sin(α-π)
sin(2a+
π
2
)•cos(2a-
π
2
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,且tanα=
2
-1
,函数f(x)=2xtan2α+sin(2α+
π
4
)
,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面积
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知α是锐角,且tan(α+
π
4
)=3,求
sin2α•cos(α+π)-sin(α-π)
sin(2a+
π
2
)•cos(2a-
π
2
)
的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江省实验中学高一(上)期末数学试卷(解析版) 题型:解答题

已知α是锐角,且tan(α+)=3,求的值.

查看答案和解析>>

同步练习册答案