| A. | 椭圆一部分 | B. | 抛物线一段 | C. | 线段 | D. | 圆弧 |
分析 设出C点坐标,把A的坐标用α表示,得到|OA|,结合$\overrightarrow{OA}•\overrightarrow{OC}=20$中结论求出C的横坐标为定值5,进一步求出C的纵坐标的范围,则点C的轨迹可求.
解答
解:设C(x,y),A(2+2cosα,sinα),其中-$\frac{π}{2}$≤α≤$\frac{π}{2}$,
则∠xOC=$\frac{α}{2}$.
∵|OA|2=(2+2cosα)2+(2sinα)2=8(1+cosα)=16$co{s}^{2}\frac{α}{2}$,
∴|OA|=4cos$\frac{α}{2}$.
由$\overrightarrow{OA}•\overrightarrow{OC}=20$得:|OC|cos$\frac{α}{2}$=5,∴x=|OC|cos$\frac{α}{2}$=5.
从而y=|OC|sin$\frac{α}{2}$=5tan$\frac{α}{2}$∈[-5,5].
故点C的轨迹是一条线段,其两个短点的坐标分别为A(5,5),B(5,-5).
故选:C.
点评 本题考查了轨迹方程,考查了数形结合的解题思想方法和数学转化思想方法,解答的关键是利用平面几何知识把未知长度的式子转化为已知长度的式子,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1-i | B. | i | C. | -1-i | D. | -1+i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}+3}}{2}$ | C. | $\frac{{\sqrt{5}+2}}{2}$ | D. | $\frac{{\sqrt{5}+1}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题:“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0” | |
| B. | “a>b”是“ac2>bc2”的充分不必要条件 | |
| C. | 命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0” | |
| D. | 若“p∨q”为假命题,则p,q均为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若f(x),g(x)都是R上的增函数,则f(x)×g(x)是R上的增函数 | |
| B. | 若f(x),g(x)都是R上的增函数,则f(x)+g(x)是R上的增函数 | |
| C. | 若f(x)×g(x)是R上的增函数,则f(x),g(x)都是R上的增函数 | |
| D. | 若f(x)+g(x)是R上的增函数,则f(x),g(x)都是R上的增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com