精英家教网 > 高中数学 > 题目详情

【题目】已知在平面直角坐标系中,圆的参数方程为为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.

1)求圆的普通方程及其极坐标方程;

2)设直线的极坐标方程为,射线与圆的交点为(异于极点),与直线的交点为,求线段的长.

【答案】(1) 普通方程为: ; 极坐标方程为:.(2)

【解析】

1)由圆的参数方程消去参数,得到普通方程,再由直角坐标与极坐标的互化公式,得到极坐标方程;

2)将代入圆的极坐标方程,得到;将代入直线的极坐标方程,得到,再由,即可得出结果.

1)由

平方相加,得:

所以圆的普通方程为:

,∴

化简得圆的极坐标方程为:

2)把代入圆的极坐标方程可得:

代入直线的极坐标方程可得:

所以线段的长

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数内有两个零点,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数fx)在(0+∞)上是减函数,其实数m的取值范围;

2)若函数fx)在(0+∞)上存在两个极值点x1x2,证明:lnx1+lnx22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断函数在区间上零点的个数;

2)函数在区间上的极值点从小到大分别为,证明:

(Ⅰ)

(Ⅱ)对一切成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是等边三角形, 边上的动点(含端点),记,.

(1)求的最大值;

(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=exlnx+axaR).

1)当a=﹣e+1时,求函数fx)的单调区间;

2)当a≥﹣1时,求证:fx)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角所对边分别为.已知.

(1)

(2) 为锐角三角形,且,求面积的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)当 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系上放置一个边长为1的正方形,此正方形沿轴滚动(向左或者向右均可),滚动开始时,点在原点处,例如:向右滚动时,点的轨迹起初时以点为圆心,1为半径的圆弧,然后以点轴交点为圆心,长度为半径……,设点的纵坐标与横坐标的函数关系式是,该函数相邻两个零点之间的距离为.

(1)写出的值,并求出当时,点轨迹与轴所围成的图形的面积,研究该函数的性质并填写下面的表格:

函数性质

结论

奇偶性

单调性

递增区间

递减区间

零点

(2)已知方程在区间上有11个根,求实数的取值范围

(3)写出函数的表达式.

查看答案和解析>>

同步练习册答案