深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.
(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望;
(2)求第二次训练时恰好取到一个新球的概率.
(1)ξ的分布列为
ξ | 0 | 1 | 2 |
P |
|
|
|
ξ的数学期望为E(ξ)=1
(2)![]()
【解析】(1)ξ的所有可能取值为0,1,2.
设“第一次训练时取到i个新球(即ξ=i)”为事件Ai(i=0,1,2).
∵集训前共有6个篮球,其中3个是新球,3个是旧球,
∴P(A0)=P(ξ=0)=
=
,
P(A1)=P(ξ=1)=
=
,
P(A2)=P(ξ=2)=
=
.
∴ξ的分布列为
ξ | 0 | 1 | 2 |
P |
|
|
|
ξ的数学期望为E(ξ)=0×
+1×
+2×
=1.
(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B.
则“第二次训练时恰好取到一个新球”就是事件A0B+A1B+A2B.而事件A0B,A1B,A2B互斥,
∴P(A0B+A1B+A2B)=P(A0B)+P(A1B)+P(A2B).
由条件概率公式,得
P(A0B)=P(A0)P(B|A0)=
×
=
×
=
,
P(A1B)=P(A1)P(B|A1)=
×
=
×
=
,
P(A2B)=P(A2)P(B|A2)=
×
=
×
=
,
∴第二次训练时恰好取到一个新球的概率为
P(A0B+A1B+A2B)=
+
+
=
.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:选择题
若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=
,则f(x)的单调递减区间是( )
A.(-∞,2] B.[2,+∞)
C.[-2,+∞) D.(-∞,-2]
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:解答题
设f(x)=ln(1+x)-x-ax2.
(1)当x=1时,f(x)取到极值,求a的值;
(2)当a满足什么条件时,f(x)在区间[-
,-
]上有单调递增区间?
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:填空题
已知函数f(x)=
x-
sinx-
cosx的图象在点A(x0,y0)处的切线斜率为1,则tanx0=________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:选择题
函数y=
-x2+1(0<x<2)的图象上任意点处切线的倾斜角记为α,则α的最小值是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-8n次独立重复实验与二项分布(解析版) 题型:选择题
在高三的一个班中,有
的学生数学成绩优秀,若从班中随机找出5名学生,那么数学成绩优秀的学生数ξ~B(5,
),则P(ξ=k)取最大值的k值为( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-7离散型随机变量及分布列(解析版) 题型:填空题
某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为
,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=
,则随机变量X的数学期望E(X)=________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-6几何概型(解析版) 题型:解答题
已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.
(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:
所表示的平面区域内的概率.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-4随机事件的概率(解析版) 题型:选择题
5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为偶数的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com