精英家教网 > 高中数学 > 题目详情

若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是(  )

A.(-∞,2] B.[2,+∞)

C.[-2,+∞) D.(-∞,-2]

 

B

【解析】由f(1)=,可知a=

设|2x-4|=t,当x≥2时,t为增函数,

∴f(x)在此区间为减函数,选B项.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-7函数的图象(解析版) 题型:选择题

已知函数f(x)的图象如图所示,则f(x)的解析式可以是(  )

A.f(x)=

B.f(x)=

C.f(x)=-1

D.f(x)=x-

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:选择题

若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于(  )

A.-1 B.1 C.2 D.-2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题

设定义在R上的函数f(x)满足f(x)·f(x+2)=13,若f(1)=2,则f(2015)=(  )

A. B. C.13 D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:解答题

已知函数f(x)=a-.

(1)求证:函数y=f(x)在(0,+∞)上是增函数;

(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:选择题

下列四个函数中,在(0,+∞)上为增函数的是(  )

A.f(x)=3-x B.f(x)=x2-3x

C.f(x)=- D.f(x)=-|x|

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域(解析版) 题型:解答题

已知函数f(x)=x2-4ax+2a+6,x∈R.

(1)若函数的值域为[0,+∞),求a的值;

(2)若函数的值域为非负数集,求函数f(a)=2-a|a+3|的值域.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:填空题

函数f(x)=-x3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-8n次独立重复实验与二项分布(解析版) 题型:解答题

深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.

(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望;

(2)求第二次训练时恰好取到一个新球的概率.

 

查看答案和解析>>

同步练习册答案