精英家教网 > 高中数学 > 题目详情

若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于(  )

A.-1 B.1 C.2 D.-2

 

B

【解析】∵函数f(x)=x2-ax-a的图象为开口向上的抛物线,∴函数的最大值在区间的端点处取得,∵f(0)=-a,f(2)=4-3a,∴,解得a=1,∴选B.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:填空题

若平面直角坐标系内两点P,Q满足条件:①P,Q都在函数f(x)的图象上;②P,Q关于原点对称,则称点对(P,Q)是函数f(x)的一个“友好点对”(点对(P,Q)与点对(Q,P)为同一个“友好点对”).已知函数f(x)=,则f(x)的“友好点对”有________个.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-6对数与对数函数(解析版) 题型:选择题

已知函数f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,则a的取值范围是(  )

A.(-∞,4] B.[4,+∞)

C.[-4,4] D.(-4,4]

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:解答题

对于函数f(x)若存在x0∈R,f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).

(1)当a=1,b=-2时,求函数f(x)的不动点;

(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;

(3)在(2)的条件下,若y=f(x)图象上A,B两点的横坐标是函数f(x)的不动点,且A,B两点关于直线y=kx+对称,求b的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:填空题

已知函数f(x)=x2-2ax+5在(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,则实数a的取值范围为______.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:填空题

已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:填空题

y=f(x)是定义在R上的偶函数且在[0,+∞)上递增,不等式f()<f(-)的解集为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:选择题

若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是(  )

A.(-∞,2] B.[2,+∞)

C.[-2,+∞) D.(-∞,-2]

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:解答题

设f(x)=ln(1+x)-x-ax2.

(1)当x=1时,f(x)取到极值,求a的值;

(2)当a满足什么条件时,f(x)在区间[-,-]上有单调递增区间?

 

查看答案和解析>>

同步练习册答案