精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2-2ax+5在(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,则实数a的取值范围为______.

 

[2,3]

【解析】函数f(x)=(x-a)2+5-a2在(-∞,2]上是减函数,∴a≥2,函数f(x)在[1,a]上是减函数,在[a,a+1]上是增函数,要使x1,x2∈[1,a+1]时,总有|f(x1)-f(x2)|≤4,

只要

又f(1)≥f(a+1),∴只要f(1)-f(a)≤4,即(6-2a)-(5-a2)≤4,解得-1≤a≤3.又a≥2,故2≤a≤3.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-9函数模型及其应用(解析版) 题型:选择题

某工厂需要建一个面积为512 m2的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌新墙所用材料最省时,堆料场的长和宽的比为(  )

A.1 B.2 C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-6对数与对数函数(解析版) 题型:解答题

已知lgx+lgy=2 lg(2x-3y),求的值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-5指数及指数函数(解析版) 题型:选择题

已知2a=5b=,则=(  )

A. B.1 C. D.2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:填空题

对任意实数a,b,函数F(a,b)=(a+b-|a-b|),如果函数f(x)=-x2+2x+3,g(x)=x+1,那么函数G(x)=F(f(x),g(x))的最大值等于________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:选择题

若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于(  )

A.-1 B.1 C.2 D.-2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题

若函数f(x)、g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ex,则有(  )

A.f(2)<f(3)<g(0) B.g(0)<f(3)<f(2)

C.f(2)<g(0)<f(3) D.g(0)<f(2)<f(3)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:解答题

已知函数f(x)=a-.

(1)求证:函数y=f(x)在(0,+∞)上是增函数;

(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:解答题

已知函数f(x)=xlnx-x2.

(1)当a=1时,函数y=f(x)有几个极值点?

(2)是否存在实数a,使函数f(x)=xlnx-x2有两个极值?若存在,求实数a的取值范围;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案