精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3+3x对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为________.

 

(-2,)

【解析】∵函数f(x)=x3+3x是奇函数,且在定义域f(x)=x3+3x上单调递增,∴由f(mx-2)+f(x)<0得f(mx-2)<-f(x)=f(-x),即mx-2<-x,令g(m)=xm+(x-2),由题意知g(2)<0,g(-2)<0,令g(m)=xm+(x-2),g(2)<0,g(-2)<0,

,解得-2<x<.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-8函数与方程(解析版) 题型:解答题

已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-5指数及指数函数(解析版) 题型:填空题

如果函数f(x)=ax(ax-3a2-1)(a>0且a≠1)在区间[0,+∞)上是增函数,那么实数a的取值范围是______.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:解答题

已知函数f(x)=xm-且f(4)=.

(1)求m的值;

(2)判定f(x)的奇偶性;

(3)判断f(x)在(0,+∞)上的单调性,并给予证明.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:选择题

若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于(  )

A.-1 B.1 C.2 D.-2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:解答题

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.

(1)求f(π)的值;

(2)当-4≤x≤4时,求f(x)的图象与x轴所围图形的面积.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题

设定义在R上的函数f(x)满足f(x)·f(x+2)=13,若f(1)=2,则f(2015)=(  )

A. B. C.13 D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:选择题

下列四个函数中,在(0,+∞)上为增函数的是(  )

A.f(x)=3-x B.f(x)=x2-3x

C.f(x)=- D.f(x)=-|x|

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:选择题

设f(x)=-x3+x2+2ax,若f(x)在(,+∞)上存在单调递增区间,则实数a的取值范围为(  )

A.a>- B.a<- C.a> D.不存在

 

查看答案和解析>>

同步练习册答案