【题目】在直角坐标系
中,以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,
是曲线
与直线
:
(
)的交点(异于原点
).
(1)写出
,
的直角坐标方程;
(2)求过点
和直线
垂直的直线
的极坐标方程.
科目:高中数学 来源: 题型:
【题目】2017年“双11”前夕,某市场机构随机对中国公民进行问卷调查,用于调研“双11”民众购物意愿和购物预计支出状况. 分类统计后,从有购物意愿的人中随机抽取100人作为样本,将他(她)们按照购物预计支出(单位:千元)分成8组: [0, 2),[2, 4),[4, 6),…,[14, 16],并绘制成如图所示的频率分布直方图,其中,样本中购物预计支出不低于1万元的人数为a.
![]()
(Ⅰ) (i)求a的值,并估算这100人购物预计支出的平均值;
(ii)以样本估计总体,在有购物意愿的人群中,若至少有65%的人购物预计支出不低于x千元,求x的最大值.
(Ⅱ) 如果参与本次问卷调查的总人数为t,问卷调查得到下列信息:
①参与问卷调查的男女人数之比为2:3;
②男士无购物意愿和有购物意愿的人数之比是1:3,女士无购物意愿和有购物意愿的人数之比为1:4;
③能以90%的把握认为“双11购物意愿与性别有关”,但不能以95%的把握认为“双11购物意愿与性别有关”.
根据以上数据信息,求t所有可能取值组成的集合M.
附:
,其中
.
独立检验临界值表:
| 0.100 | 0.050 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,满足Sn=2an-1.(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=
an,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络时代的进步,流量成为手机的附带品,人们可以利用手机随时随地的浏览网页,聊天,看视频,因此,社会上产生了很多低头族.某研究人员对该地区18∽50岁的5000名居民在月流量的使用情况上做出调查,所得结果统计如下图所示:
![]()
(Ⅰ)以频率估计概率,若在该地区任取3位居民,其中恰有
位居民的月流量的使用情况
在300M∽400M之间,求
的期望
;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)经过数据分析,在一定的范围内,流量套餐的打折情况
与其日销售份数
成线性相关
关系,该研究人员将流量套餐的打折情况
与其日销售份数
的结果统计如下表所示:
折扣 | 1折 | 2折 | 3折 | 4折 | 5折 |
销售份数 | 50 | 85 | 115 | 140 | 160 |
试建立
关于
的的回归方程.
附注:回归方程
中斜率和截距的最小二乘估计公式分别为:
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图在棱锥
中,
为矩形,
面
,
,
与面
成
角,
与面
成
角.
(1)在
上是否存在一点
,使
面
,若存在确定
点位置,若不存在,请说明理由;
(2)当
为
中点时,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有m个(
)实数
,它们满足下列条件:①
,
②
记这m个实数
的和为
,
即
.
(1)若
,证明:
;
(2)若m=5,满足题设条件的5个实数构成数列
.设C为所有满足题设条件的数列
构成的集合.集合
,求A中所有正数之和;
(3)对满足题设条件的m个实数构成的两个不同数列
与
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为等比数列,
公比为
为数列{an}的前n项和.
(1)若
求
;
(2)若调换
的顺序后能构成一个等差数列,求
的所有可能值;
(3)是否存在正常数
,使得对任意正整数n,不等式
总成立?若存在,求出
的范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若函数y=h(x)的单调减区间是
,求实数a的值;
(2)若f(x)≥g(x)对于定义域内的任意x恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com