精英家教网 > 高中数学 > 题目详情

已知椭圆E:+=1(a>b>0)的离心率e=,a2b2的等差中项为.

(1)求椭圆E的方程.

(2)A,B是椭圆E上的两点,线段AB的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.

 

(1) +=1 (2) (-,)

【解析】(1)由题意得

解得:.即椭圆E的方程为+=1.

(2)A,B的坐标分别为(x1,y1),(x2,y2).

因线段AB的垂直平分线与x轴相交,

AB不平行于y,x1x2.

又交点为P(t,0),|PA|=|PB|,

(x1-t)2+=(x2-t)2+,

t=+ ①

A,B在椭圆上,=4-,=4-.

将上式代入①,t=.

又∵-3x13,-3x23,x1x2,

-6<x1+x2<6,-<t<,

即实数t的取值范围是(-,).

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十四第八章第五节练习卷(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)的右焦点为F(1,0),且点(-1,)在椭圆C.

(1)求椭圆C的标准方程.

(2)已知点Q(,0),动直线l过点F,且直线l与椭圆C交于A,B两点,证明:·为定值.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:填空题

过双曲线的右焦点F作实轴所在直线的垂线,交双曲线于A,B两点,设双曲线的左顶点为M,若点M在以AB为直径的圆的内部,则此双曲线的离心率e的取值范围为      .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:选择题

过点A(11,2)作圆x2+y2+2x-4y-164=0的弦,其中弦长为整数的共有(  )

(A)16(B)17(C)32(D)34

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:选择题

圆心在y轴上,半径为1,且过点(1,2)的圆的方程为(  )

(A)x2+(y-2)2=1 (B)x2+(y+2)2=1

(C)(x-1)2+(y-3)2=1 (D)x2+(y-3)2=1

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十九第八章第十节练习卷(解析版) 题型:选择题

若已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,PF1F2是以PF1为底边的等腰三角形.|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,e1·e2的取值范围是(  )

(A)(0,+) (B)(,+)

(C)(,+) (D)(,+)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十三第八章第四节练习卷(解析版) 题型:解答题

过点Q(-2,)作圆O:x2+y2=r2(r>0)的切线,切点为D,|QD|=4.

(1)r的值.

(2)P是圆O上位于第一象限内的任意一点,过点P作圆O的切线l,lx轴于点A,y轴于点B,=+,||的最小值(O为坐标原点).

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:填空题

设椭圆方程为x2+=1,过点M(0,1)的直线l交椭圆于A,B两点,O是坐标原点,P满足=(+),l绕点M旋转时,动点P的轨迹方程为     .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十四第三章第八节练习卷(解析版) 题型:解答题

如图,摄影爱好者在某公园A,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为30°,已知摄影爱好者的身高约为(将眼睛S距地面的距离SA米处理).

(1)求摄影爱好者到立柱的水平距离AB和立柱的高度OB.

(2)立柱的顶端有一长为2米的彩杆MN,MN绕其中点O在摄影爱好者与立柱所在的平面内旋转.在彩杆转动的任意时刻,摄影爱好者观察彩杆MN的视角∠MSN(设为θ)是否存在最大值?若存在,请求出∠MSN取最大值时cosθ的值;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案