精英家教网 > 高中数学 > 题目详情
已知中心在原点,坐标轴为对称轴的双曲线的渐近线方程是y=±2x,则该双曲线的离心率是
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:当双曲线的焦点在x轴时,由渐近线方程可得b=2a,离心率e=
c
a
=
a2+b2
a
,代入化简可得,当双曲线的焦点在y轴时,可得a=2b,同样代入化简可得答案.
解答: 解:当双曲线的焦点在x轴时,渐近线为y=±
b
a
x=±2x,即
b
a
=2,
变形可得b=2a,可得离心率e=
c
a
=
a2+b2
a
=
b
a
=
5

当双曲线的焦点在y轴时,渐近线为y=±
a
b
x=±2x,即
a
b
=2,
变形可得a=2b,可得离心率e=
c
a
=
a2+b2
a
=
5
b
2b
=
5
2

故此双曲线的离心率为:
5
5
2

故答案为:
5
5
2
点评:本题考查双曲线的离心率,涉及双曲线的渐近线,和分类讨论的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|x|+
m
x
-1(x≠0).
(1)当m=2时,判断f(x)在(-∞,0)的单调性,并用定义证明.
(2)若对任意x∈R,不等式 f(2x)>0恒成立,求m的取值范围;
(3)讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)(x∈R)满足f(1)=2,且f(x)在R上的导数f′(x)<1,则不等式f(x2)<x2+1中x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=
3
2
,前n项和为Sn,且满足2an+1+Sn=3( n∈N*).则满足
18
17
S2n
Sn
8
7
的所有n的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3-mx2+5x+2013在(1,3)上只有一个极值点,则实数m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
25
-
y2
9
=1的左支上有一点M到右焦点F1的距离为18,N是MF1的中点,O为坐标原点,则|ON|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若x∈(m-
1
2
,m+
1
2
](其中m为整数),则m叫做与实数x“亲密的整数”,记作{x}=m,在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:
①函数y=f(x)在x∈(0,1)上是增函数;
②函数y=f(x)的图象关于直线x=
k
2
(k∈Z)对称;
③函数y=f(x)是周期函数,最小正周期为1;
④当x∈(0,2]时,函数g(x)=f(x)-lnx有两个零点.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-2x
的定义域为集合A,函数y=ln(2x+1)的定义域为集合B,则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x+sin2x(0≤x<π)的递减区间为
 

查看答案和解析>>

同步练习册答案