精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos(2x+π)+
3
cos(2x-
2
)+a
(a为常数,x∈R).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)在[-
π
6
π
6
]
上的最大值与最小值之和为3,求常数a的值.
分析:(Ⅰ)利用诱导公式、两角和差的正弦余弦公式、周期公式即可得出;
(Ⅱ)利用正弦函数的单调性即可得出.
解答:解:(Ⅰ)f(x)=cos(2x+π)+
3
cos(2x-
2
)+a

=-cos2x-
3
sin2x+a

=-2(
1
2
cos2x+
3
2
sin2x)+a

=-2sin(2x+
π
6
)+a

∴函数f(x)的最小正周期T=
2
=π.                           
(Ⅱ)当x∈[-
π
6
π
6
]
-
π
6
≤2x+
π
6
π
2

∴函数f(x)在[-
π
6
π
6
]
上的最大值是-2sin(-
π
6
)+a=1+a

最小值是-2sin
π
2
+a=-2+a

∴(1+a)+(-2+a)=3,得a=2.
点评:熟练掌握诱导公式、两角和差的正弦余弦公式、周期公式、正弦函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1

(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=
3
,f(C)=0,若向量
m
=(1, sinA)
与向量
n
=(2,sinB)
共线,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知函数f(x)=
1,x>0
0,x=0
-1,x<0
,设F(x)=x2•f(x),则F(x)是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(
1
2
)x-1,x≤0
ln(x+1),x>0
,若|f(x)|≥ax,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(c-1)2x,(x≥1)
(4-c)x+3,(x<1)
的单调递增区间为(-∞,+∞),则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案