精英家教网 > 高中数学 > 题目详情
15.从正方体的八个顶点中随机选择四个顶点,则以它们作为顶点的四面体是正四面体的概率等于(  )
A.$\frac{1}{35}$B.$\frac{1}{29}$C.$\frac{4}{35}$D.$\frac{4}{29}$

分析 根据题意,画出图形,结合图形求出对应的基本事件数,从而求出对应的概率.

解答 解:如图所示,
从正方体的八个顶点中随机选择四个顶点,能构成四面体的基本事件数是
${C}_{8}^{4}$-6-6=70-12=58,
以这四个点为顶点的四面体是正四面体的基本事件数是2,
∴所求的概率为P=$\frac{2}{58}$=$\frac{1}{29}$.
故选:B.

点评 本题考查了古典概型的概率计算问题,解题时应仔细弄懂题意,以免出错,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.从一点O顺次引出八条射线OA、OB、OC、OD、OE、OF、OG、OH,其中每相邻两条射线的夹角都是45°,在OA上取OA=a,由A作OB的垂线AA1,A1是垂足;由点A1作OC的垂线A1A2,A2是垂足,由点A2作OD的垂线A2A3,A3是垂足,然后用同样的方法如此无限继续下去,求所得折线A1A2A3A4…的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列各式的值:
(1)3${\;}^{1-lo{g}_{3}2}$;
(2)4${\;}^{\frac{1}{2}(lo{g}_{2}10-lo{g}_{2}5)}$;
(3)3${\;}^{lo{g}_{2}4•lo{g}_{4}5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=log${\;}_{\frac{1}{2}}$|sinx|,则周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2x3-x2+ax+1-a2在(-∞,+∞)上是增函数,若函数的零点属于区间(0,1),求实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-m-$\sqrt{x}$(x≥0).
(1)当f(x)≥0恒成立时,求实数m的取值范围;
(2)当m≤2时,求证:f(x)>ln$\frac{1}{2e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在正方形OABC内任取一点,取到函数y=x的图象与x轴正半轴之间(阴影部分)的点的概率等于0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$=(6,8),|$\overrightarrow{a}$-$\overrightarrow{b}$|=2,则|$\overrightarrow{b}$|的取值范围[6,12].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{a{•2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$,若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是(  )
A.(-∞,0)B.(0,1)C.(-∞,0)∪(0,1)D.(0,1)∪(1,+∞)

查看答案和解析>>

同步练习册答案