精英家教网 > 高中数学 > 题目详情

(本题满分13分) 已知函数,函数
(I)当时,求函数的表达式;
(II)若,且函数上的最小值是2 ,求的值;
(III)对于(II)中所求的a值,若函数,恰有三个零点,求b的取值范围。

(Ⅰ)函数.(Ⅱ)

解析试题分析: (1)先求解函数f(x)的导函数,进而得到第一问的解析式。
(2)∵由⑴知当时,,
分析导数的正负号,进而判定极值,得到最值。
(3)
所以,方程,有两个不等实根运用转化思想来得到。
解: (Ⅰ)∵,
∴当时,; 当时,
∴当时,; 当时,.
∴当时,函数. (4分)
(Ⅱ)∵由⑴知当时,,
∴当时, 当且仅当时取等号.由,得a="1" (8分)

,得或x=b
(1)若b>1,则当0<x<1时,,当1<x<b,时,当x>b时,
(2)若b<1,且b则当0<x<b时,,当b<x<1时,,当x>1时,
所以函数h(x)有三个零点的充要条件为解得 
综合: (13分)
另解:
所以,方程,有两个不等实根,且不含零根
解得: (13分)
考点:本题主要考查了函数的最值和函数的零点的综合运用
点评:解决该试题的关键是运用导数的思想来判定函数单调性,进而分析极值,得到最值,同时对于方程根的问题可以转换为图像的交点问题解决。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数)的图象为曲线
(Ⅰ)求曲线上任意一点处的切线的斜率的取值范围;
(Ⅱ)若曲线上存在两点处的切线互相垂直,求其中一条切线与曲线的切点的横坐标的取值范围;
(Ⅲ)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
求下列函数的导数
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设a为实数,函数
(I)求的单调区间与极值;
(II)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列的前项和为,函数,
(其中均为常数,且),当时,函数取得极小值.
均在函数的图像上(其中的导函数).
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分) 
求下列函数导数
(1)  f(x)= (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知为实数,
(Ⅰ)若a=2,求的单调递增区间;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,(),曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设 
(1)若上递增,求的取值范围;
(2)若上的存在单调递减区间 ,求的取值范围

查看答案和解析>>

同步练习册答案