精英家教网 > 高中数学 > 题目详情

【题目】设三棱锥的每个顶点都在球的球面上,是面积为的等边三角形,,且平面平面.

1)确定的位置(需要说明理由),并证明:平面平面.

2)与侧面平行的平面与棱分别交于,求四面体的体积的最大值.

【答案】1上,理由见解析,证明见解析,(2

【解析】

1)取的中点,连接,可证在线段上,平面,从而得到平面平面.

2)设,可证,利用导数可求体积的最大值.

1)证明:取的中点,连接,取点的三等分点且

连接.

因为,所以.

又平面平面,平面平面平面

所以平面.

因为平面,故.

因为为等腰直角三角形,的中点,故

因为

,故,同理

因为是等边三角形,故的中心,故

为三棱锥的外接球的球心,

重合即在线段上且.

因为上,所以平面

平面,所以平面平面.

2)由题意得,解得

因为为等腰直角三角形,的中点,故

而平面平面,平面平面

平面,故平面,故为点到平面的距离.

在等腰直角三角形中,到平面的距离.

到平面的距离为.

因为平面平面,平面平面,平面平面

,同理,因为方向相同,故

同理

所以,则的面积为.

,所以到平面的距离为

所以四面体的体积.

时,;当时,.

所以为增函数,在为减函数,

所以

即四面体的体积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动圆恒过点,且与直线相切.

1)求圆心的轨迹的方程;

2)设是轨迹上横坐标为2的点,的平行线交轨迹两点,交轨迹处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班图书角有文学名著类图书5本,学科辅导书类图书3本,其它类图书2本,共10本不同的图书,该班从图书角的10本不同图书中随机挑选3本不同图书参加学校活动.

1)求选出的三本图书来自于两个不同类别的概率;

2)设随机变量X表示选出的3本图书中,文学名著类本数与学科辅导类本数差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019101日我国隆重纪念了建国70周年,期间进行了一系列大型庆祝活动,极大地激发了全国人民的爱国热情.某校高三学生也投入到了这场爱国活动中,他()们利用周日休息时间到社区做义务宣讲员,学校为了调查高三男生和女生周日的活动时间情况,随机抽取了高三男生和女生各40人,对他()们的周日活动时间进行了统计,分别得到了高三男生的活动时间(单位:小时)的频数分布表和女生的活动时间(单位:小时)的频率分布直方图.(活动时间均在内)

活动时间

频数

8

10

7

9

4

2

1)根据调查,试判断该校高三年级学生周日活动时间较长的是男生还是女生?并说明理由;

2)在被抽取的80名高三学生中,从周日活动时间在内的学生中抽取2人,求恰巧抽到11女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为解决城市的拥堵问题,某城市准备对现有的一条穿城公路MON进行分流,已知穿城公路MON自西向东到达城市中心点O后转向东北方向(即).现准备修建一条城市高架道路LLMO上设一出入口A,在ON上设一出入口B.假设高架道路LAB部分为直线段,且要求市中心OAB的距离为10km

1)求两站点AB之间距离的最小值;

2)公路MO段上距离市中心O30km处有一古建筑群C为保护古建筑群,设立一个以C为圆心,5km为半径的圆形保护区.则如何在古建筑群C和市中心O之间设计出入口A,才能使高架道路L及其延伸段不经过保护区(不包括临界状态)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下述四个结论:

①函数的图象把圆的面积两等分

是周期为的函数

③函数在区间上有3个零点

④函数在区间上单调递减

其中所有正确结论的编号是(

A.①③④B.②④C.①④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保障某治疗新冠肺炎药品的主要药理成分在国家药品监督管理局规定的值范围内,武汉某制药厂在该药品的生产过程中,检验员在一天中按照规定从该药品生产线上随机抽取20件产品进行检测,测量其主要药理成分含量(单位:mg.根据生产经验,可以认为这条药品生产线正常状态下生产的产品的主要药理成分含量服从正态分布Nμσ2.在一天内抽取的20件产品中,如果有一件出现了主要药理成分含量在(μ3σμ+3σ)之外的药品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对本次的生产过程进行检查.

1)下面是检验员在224日抽取的20件药品的主要药理成分含量:

10.02

9.78

10.04

9.92

10.14

10.04

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

9.95

10.05

10.05

9.96

10.12

经计算得xi9.96s0.19;其中xi为抽取的第i件药品的主要药理成分含量,i1220.用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对本次的生产过程进行检查?

2)假设生产状态正常,记X表示某天抽取的20件产品中其主要药理成分含量在(μ3σμ+3σ)之外的药品件数,求/span>PX1)及X的数学期望.

附:若随机变量Z服从正态分布Nμσ2),则Pμ3σZμ+3σ≈0.99740.997419≈0.95.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,.

1)求证:平面平面

2)若,二面角,求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案