精英家教网 > 高中数学 > 题目详情
已知f(x)=m+
22x+1
是奇函数,则实数的m的值为
 
分析:先求出函数的定义域,看函数在零处是否有意义,再根据奇函数在零处有意义则在零处的函数值为零,建立等式关系即可求出m.
解答:解:函数f(x)=m+
2
2x+1
的定义域是R,又是奇函数
∴f(0)=m+1=0
解得m=-1
故答案为-1
点评:本题主要考查了函数的奇偶性的应用,以及奇函数的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx)(ω>0).若f(x)图象中相邻的对称轴间的距离不小于
π
2

(1)求ω的取值范围
(2)在△ABC中,a,b,c分别为角A,B,C的对边.且a=
3
,b+c=3,f(A)=1,当ω最大时.求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同时满足条件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0.
则m的取值范围是
(-4,-2)
(-4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:
(1)?x∈R,f(x)<0或g(x)<0;
(2)?x∈(-∞,-4),f(x)g(x)<0.
则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同时满足条件:
①?x∈R,f(x)<0或g(x)<0;
②x∈(-∞,-4),f(x)g(x)<0.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若满足对于任意x∈R,f(x)<0和g(x)<0至少有一个成立.则m的取值范围是
 

查看答案和解析>>

同步练习册答案