精英家教网 > 高中数学 > 题目详情
已知F(1,0),直线l:x=-1,P为平面上的动点,过点P作l的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(Ⅰ)求动点P的轨迹曲线C的方程;
(Ⅱ)设动直线y=kx+m与曲线C相切于点M,且与直线x=-1相交于点N,试问:在x轴上是否存在一个定点E,使得以MN为直径的圆恒过此定点E?若存在,求出定点E的坐标;若不存在,说明理由.
分析:(Ⅰ)设出P点坐标,求出向量
QP
QF
FP
FQ
,代入坐标后直接得抛物线方程;
(Ⅱ)联立直线方程和抛物线方程,由判别式等于0得到m与k的关系,从而把M和N的坐标用含有m的代数式表示,设出E点坐标,由ME⊥NE代入坐标整理即可得到E点坐标.
解答:解:(Ⅰ)设点P(x,y),则Q(-1,y),由
QP
QF
=
FP
FQ
,得
(x+1,0)•(2,-y)=(x-1,y)•(-2,y),化简得y2=4x;
(Ⅱ)由
y=kx+m
y2=4x
,得k2x2+(2km-4)x+m2=0,
由△=0,得km=1,从而有M(m2,2m),N(-1,-
1
m
+m)

设点E(x,0),使得ME⊥NE,则(x-m2)(x+1)+(-2m)(
1
m
-m)=0

(1-x)m2+x2+x-2=0,得x=1.
所以存在一个定点E(1,0)符合题意.
点评:本小题主要考查相关点法求轨迹方程和直线与抛物线的位置关系的判断和应用,解决直线与圆锥曲线的位置关系问题时,一般离不开联立方程组,所以要仔细运算,该题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P与直x=4的距离等于它到定点F(1,0)的距离的2倍,
(1)求动点P的轨迹C的方程;
(2)点M(1,1)在所求轨迹内,且过点M的直线与曲线C交于A、B,当M是线段AB中点时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年丰台区统一练习一理)(13分)

已知如图(1),正三角形ABC的边长为2a,CDAB边上的高,

EF分别是ACBC边上的点,且满足,现将△ABC

沿CD翻折成直二面角A-DC-B,如图(2).

(Ⅰ) 试判断翻折后直线AB与平面DEF的位置关系,并说明理由;

(Ⅱ) 求二面角B-AC-D的大小;                                 

(Ⅲ) 若异面直线ABDE所成角的余弦值为,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动点P与直x=4的距离等于它到定点F(1,0)的距离的2倍,
(1)求动点P的轨迹C的方程;
(2)点M(1,1)在所求轨迹内,且过点M的直线与曲线C交于A、B,当M是线段AB中点时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直l与C相交于A、B两点,点A关于x轴的对称点为D。 (1)证明:点F在直线BD上;
(2)设=,求△BDK的内切圆M的方程。

查看答案和解析>>

科目:高中数学 来源:2008-2009学年福建省泉州市南安一中高二(上)年期末数学试卷(文科)(解析版) 题型:解答题

已知动点P与直x=4的距离等于它到定点F(1,0)的距离的2倍,
(1)求动点P的轨迹C的方程;
(2)点M(1,1)在所求轨迹内,且过点M的直线与曲线C交于A、B,当M是线段AB中点时,求直线AB的方程.

查看答案和解析>>

同步练习册答案