精英家教网 > 高中数学 > 题目详情
已知tanθ=2求下列各式的值:
(1)
sinθ-cosθ
sinθ+cosθ
;               
(2)sin2θ-2cos2θ.
考点:同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:弦化切,代入计算,即可得出结论.
解答: 解:(1)
sinθ-cosθ
sinθ+cosθ
=
tanθ-1
tanθ+1
=
1
3

(2)sin2θ-2cos2θ=
sin2θ-2cos2θ
sin2θ+cos2θ
=
tan2θ-2
tan2θ+1
=
2
5
点评:本题考查同角三角函数基本关系的运用,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简下列各式:
(1)a 
1
2
a 
1
4
a -
3
8
;              
(2)(x 
1
2
y -
1
3
6       
(3)(x 
3
2
y)2÷(xy 
2
3

(4)(2a 
1
2
+3b -
1
4
)(2a 
1
2
-3b -
1
4
)                      
(5)(a2-2+a-2)÷(a2-a-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前项和为n,已知S1=1,
Sn+1
Sn
=
n+c
n
(为常数,c≠1,n∈N*),且a1,a2,a3成等差数列.
(1)求的值;
(2)求数列{an}的通项公式;
(3)若数列{bn}是首项为1,公比为的等比数列,记An=a1b1+a2b2+a3b3+…+anbn,Bn=a1b1+a2b2+a3b3+…+(-1)n-1anbn,n∈N*.求证:A2n+3B2n≤-4,(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sinA+cosA=
2
2
,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点是F1(-1,0),F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项,若点P在第三象限,且∠PF1F2=120°,求tan∠F1PF2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M(x,y)到直线l:y=4的距离是它到点N(0,1)的距离的2倍.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)过点P(3,0)的直线m与轨迹C交于A,B两点.若A是PB的中点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是角A、B、C的对边,
m
=(2a+c,b),
n
=(cosB,cosC),且
m
n

(1)求角B的大小;
(2)设f(x)=2sinxcosxcos(A+C)-
3
2
cos2x,如果当x∈[0,
π
2
]时,不等式f(x)+λ≥0恒成立,求λ的最小值;
(3)在(2)的条件下,若将f(x)图象向左平移t(t>0)个单位后,所得图象为偶函数图象;将f(x)图象向右平移s(s>0)个单位后,所得图象为奇函数图象,求s+t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加高一年级期末考试的学生中抽出60名学生,将其某科成绩(是不小于40不大于100的整数)分成六段[40,50),[50,60)…[90,100]后画出如下频率分布直方图,根据图形中所给的信息,回答以下问题:
(1)求第四小组[70,80)的频率;
(2)求样本的众数;
(3)观察频率分布直方图图形的信息,估计这次考试的及格率(60分及以上为及格)和平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,两块阴影部分的面积和为
 

查看答案和解析>>

同步练习册答案