精英家教网 > 高中数学 > 题目详情

已知椭圆C:=1(a>b>0)的离心率e=,一条准线方程为x=

(1)求椭圆C的方程;

(2)设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.

①当直线OG的倾斜角为60°时,求△GOH的面积;

②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.

 

(1)(2)①S△GOH=②x2+y2=

【解析】(1)因为,a2=b2+c2,

解得a=3,b=,所以椭圆方程为

(2)①由解得 得

所以OG=,OH=,所以S△GOH=.

②假设存在满足条件的定圆,设圆的半径为R,则OG·OH=R·GH,

因为OG2+OH2=GH2,故

当OG与OH的斜率均存在时,不妨设直线OG方程为y=kx,

所以OG2=

同理可得OH2=,(将OG2中的k换成-可得),R=

当OG与OH的斜率有一个不存在时,可得

故满足条件的定圆方程为:x2+y2=

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:填空题

已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么·的最小值为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:填空题

圆心在y轴上,半径为1,且过点(1,2)的圆的方程为______________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题

已知点A(4,-3),B(2,-1)和直线l:4x+3y-2=0,求一点P使|PA|=|PB|,且点P到l的距离等于2.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:填空题

直线l经过点(3,0),且与直线l′:x+3y-2=0垂直,则l的方程是______________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).

(1)求抛物线C的标准方程;

(2)设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.

(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;

(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:解答题

如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x,y1),B(x2,y2).

(1)求y1+y2的值;

(2)若y1≥0,y2≥0,求△PAB面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年陕西西工大附中高三上学期第四次适应性训练文数学卷(解析版) 题型:解答题

已知公比不为1的等比数列的前项和为,且成等差数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

 

查看答案和解析>>

同步练习册答案