精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.

(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;

(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.

 

(1)y=0或7x+24y-28=0.(2)

【解析】(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d==1,结合点到直线距离公式,得=1,化简得24k2+7k=0,解得k=0或k=-.

所求直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.

(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.

因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有

化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5.

因为关于k的方程有无穷多解,所以有

解得点P坐标为.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).

(1)求证:不论m取什么值,圆心在同一直线l上;

(2)与l平行的直线中,哪些与圆相交,相切,相离.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第3课时练习卷(解析版) 题型:解答题

已知△ABC的顶点为A(3,-1),AB边上的中线所在的直线方程为6x+10y-59=0,∠B的平分线所在的直线方程为x-4y+10=0,求BC边所在的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率e=,一条准线方程为x=

(1)求椭圆C的方程;

(2)设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.

①当直线OG的倾斜角为60°时,求△GOH的面积;

②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:填空题

已知抛物线y2=2px(p≠0)上存在关于直线x+y=1对称的相异两点,则实数p的取值范围为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:填空题

已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足≤1,则PF1+PF2的取值范围为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:解答题

如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第10课时练习卷(解析版) 题型:填空题

椭圆=1的两焦点为F1、F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年陕西西工大附中高三上学期第四次适应性训练文数学卷(解析版) 题型:选择题

某程序框图如图所示,若,则该程序运行后,输出的的值为( )

A. 33 B.31 C.29 D.27

 

查看答案和解析>>

同步练习册答案