精英家教网 > 高中数学 > 题目详情

【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:

组号

分组

频数

频率

第1组

[50,60)

5

0.05

第2组

[60,70)

0.35

第3组

[70,80)

30

第4组

[80,90)

20

0.20

第5组

[90,100]

10

0.10

合计

100

1.00

(Ⅰ)求的值;

(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率。

【答案】(1) 35,0.30;(2) .

【解析】试题分析:(Ⅰ)直接利用频率和等于1求出b,用样本容量乘以频率求a的值;

(Ⅱ)由分层抽样方法求出所抽取的6人中第三、第四、第五组的学生数,利用列举法写出从中任意抽取2人的所有方法种数,查出2人至少1人来自第四组的事件个数,然后利用古典概型的概率计算公式求解.

试题解析:

(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30

(Ⅱ )因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,

每组分别为,第3组: ×30=3人,第4组: ×20=2人,第5组: ×10=1人,

所以第3、4、5组应分别抽取3人、2人、1

设第3组的3位同学为A1A2A3,第4组的2位同学为B1B2,第5组的1位同学为C1,则从6位同学中抽2位同学有15种可能,如下:

(A1A2),(A1A3),(A1B1),(A1B2),(A1C1),(A2A3),(A2B1),(A2B2),(A2C1),(A3B1),(A3B2),(A3C1),(B1B2),(B1C1),(B2C1).其中第4组被入选的有9种,

所以其中第4组的2位同学至少有1位同学入选的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数.

(1)求的解析式;

(2)证明:函数在定义域上是增函数;

(3)设是否存在正实数使得函数内的最小值为?若存在,求出的值;若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求出圆的直角坐标方程;

(2)已知圆轴相交于 两点,直线 关于点对称的直线为.若直线上存在点使得,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)证明:函数上单调递增;

(Ⅱ)若 ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数, (a>0且a≠1)是定义域为R的奇函数.

(Ⅰ) 求的值

(Ⅱ)若,试求不等式的解集;

(Ⅲ)若,且,求上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).

(1)讨论函数y=f(x)g(x)的奇偶性;

(2)当b=0时,判断函数y= 在(﹣1,1)上的单调性,并说明理由;

(3)设h(x)=|af2(x)﹣ |,若h(x)的最大值为2,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象如图所示,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)若 ,求函数的单调区间;

(2)若,且方程内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是__________.(写出所有正确命题的序号)

①已知,“”是“”的充要条件;

②已知平面向量,“”是“”的必要不充分条件;

③已知,“”是“”的充分不必要条件;

④命题:“,使”的否定为:“,都有

查看答案和解析>>

同步练习册答案