【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:
组号 | 分组 | 频数 | 频率 |
第1组 | [50,60) | 5 | 0.05 |
第2组 | [60,70) | 0.35 | |
第3组 | [70,80) | 30 | |
第4组 | [80,90) | 20 | 0.20 |
第5组 | [90,100] | 10 | 0.10 |
合计 | 100 | 1.00 |
(Ⅰ)求的值;
(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率。
【答案】(1) 35,0.30;(2) .
【解析】试题分析:(Ⅰ)直接利用频率和等于1求出b,用样本容量乘以频率求a的值;
(Ⅱ)由分层抽样方法求出所抽取的6人中第三、第四、第五组的学生数,利用列举法写出从中任意抽取2人的所有方法种数,查出2人至少1人来自第四组的事件个数,然后利用古典概型的概率计算公式求解.
试题解析:
(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30
(Ⅱ )因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,
每组分别为,第3组: ×30=3人,第4组: ×20=2人,第5组: ×10=1人,
所以第3、4、5组应分别抽取3人、2人、1人
设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从6位同学中抽2位同学有15种可能,如下:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4组被入选的有9种,
所以其中第4组的2位同学至少有1位同学入选的概率为=
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的奇函数.
(1)求的解析式;
(2)证明:函数在定义域上是增函数;
(3)设是否存在正实数使得函数在内的最小值为?若存在,求出的值;若存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)求出圆的直角坐标方程;
(2)已知圆与轴相交于, 两点,直线: 关于点对称的直线为.若直线上存在点使得,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)讨论函数y=f(x)g(x)的奇偶性;
(2)当b=0时,判断函数y= 在(﹣1,1)上的单调性,并说明理由;
(3)设h(x)=|af2(x)﹣ |,若h(x)的最大值为2,求a+b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是__________.(写出所有正确命题的序号)
①已知,“且”是“”的充要条件;
②已知平面向量,“且”是“”的必要不充分条件;
③已知,“”是“”的充分不必要条件;
④命题:“,使且”的否定为:“,都有且”
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com