精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=eaxlnx(a>0,e为自然对数的底数)
(1)若f(x)在定义域内单调递增,求实数a的取值范围;
(2)令g(x)=$\frac{f′(x)}{{e}^{ax}}$,若相异实数x1,x2满足g(x1)=f(x2),证明:x1+x2>$\frac{2}{a}$.

分析 (1)求出原函数的导函数,再令h(x)=alnx+$\frac{1}{x}$,求其导函数可得h(x)在(0,$\frac{1}{a}$)上单调递减,在($\frac{1}{a},+∞$)上单调递增,由f(x)在定义域内单调递增,
则h($\frac{1}{a}$)≥0,由此求得实数a的取值范围;
(2)由(1)可得g(x)=h(x),$\frac{1}{a}$是g(x)的极小值点.不妨设0$<{x}_{1}<\frac{1}{a}<{x}_{2}$,令φ(x)=g(x)-g($\frac{2}{a}-x$)(0$<x<\frac{1}{a}$),可得φ′(x)<0.由此φ(x)>φ($\frac{1}{a}$)=0,得到g(x)>g($\frac{2}{a}-x$)(0$<x<\frac{1}{a}$).代入x=x1,得g(x2)=g(x1)>g($\frac{2}{a}-{x}_{1}$),由g(x)在($\frac{1}{a},+∞$)上单调递增得答案.

解答 (1)解:$f′(x)={e}^{ax}(alnx+\frac{1}{x})$,令h(x)=alnx+$\frac{1}{x}$,则h′(x)=$\frac{ax-1}{{x}^{2}}$,
令h′(x)=0,得x=$\frac{1}{a}$.
∴h(x)在(0,$\frac{1}{a}$)上单调递减,在($\frac{1}{a},+∞$)上单调递增,要使f(x)在定义域内单调递增,
则h($\frac{1}{a}$)≥0,即a(ln$\frac{1}{a}$+1)≥0,解得:a∈(0,e];
(2)证明:g(x)=$\frac{f′(x)}{{e}^{ax}}$=h(x),由(1)知,$\frac{1}{a}$是g(x)的极小值点.
不妨设0$<{x}_{1}<\frac{1}{a}<{x}_{2}$,令φ(x)=g(x)-g($\frac{2}{a}-x$)(0$<x<\frac{1}{a}$),
则φ′(x)=g′(x)-g′($\frac{2}{a}-x$)=$\frac{ax-1}{{x}^{2}}-(-1)×\frac{a(\frac{2}{a}-x)-1}{(\frac{2}{a}-x)^{2}}$=$-\frac{4(ax-1)^{2}}{{x}^{2}(2-ax)^{2}}<0$.
由此φ(x)>φ($\frac{1}{a}$)=0,即g(x)>g($\frac{2}{a}-x$)(0$<x<\frac{1}{a}$).代入x=x1 得:g(x2)=g(x1)>g($\frac{2}{a}-{x}_{1}$),
由g(x)在($\frac{1}{a},+∞$)上单调递增,因此${x}_{2}>\frac{2}{a}-{x}_{1}$,
∴x1+x2>$\frac{2}{a}$.

点评 本题考查利用导数研究函数的单调性,考查了利用导数求函数的极值,考查逻辑推理能力与运算能力,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列函数中,在其定义域内既是增函数又是奇函数的是(  )
A.y=-$\frac{1}{x}$B.y=log2(x-1)
C.y=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{-{3}^{-x},x<0}\end{array}\right.$D.y=ln(x+$\sqrt{{x}^{2}+1}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若等差数列{an}满足a17+a18+a19>0,a17+a20<0,则当n=18时,{an}的前n项和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是2x-y+1=0,若g(x)=$\frac{x}{f(x)}$,则g′(1)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{9}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,则f($\frac{1}{1001}$)+f($\frac{2}{1001}$)+…+f($\frac{1000}{1001}$)=(  )
A.1000B.600C.550D.500

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.${(2-\sqrt{x})^6}$展开式中不含x2项的系数的和为(  )
A.60B.-59C.-61D.61

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}$sin(ωx+ϕ)-cos(ωx+ϕ)(0<ϕ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴之间的距离为$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)求函数y=f(x)+f(x+$\frac{π}{4}$)的最大值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$\frac{1}{x}$-$\frac{1}{y}$=2,则$\frac{3x+xy-3y}{x-xy-y}$的值为(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=$\sqrt{6}$,四边形ABCD是边长为2的菱形,∠ABC=60°,M,N分别为BC和PB的中点..
(Ⅰ)求证:平面PBC⊥平面PMA;
(Ⅱ)求四面体M-AND的体积.

查看答案和解析>>

同步练习册答案