精英家教网 > 高中数学 > 题目详情
2.已知函数y=f(x)的图象在点(1,f(1))处的切线方程是2x-y+1=0,若g(x)=$\frac{x}{f(x)}$,则g′(1)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{9}$D.2

分析 由已知求得f′(1)与f(1)的值,再由导数的运算法则求出g′(x),取x=1得答案.

解答 解:由函数y=f(x)的图象在点(1,f(1))处的切线方程是2x-y+1=0,得f′(1)=2,且f(1)=3.
又g(x)=$\frac{x}{f(x)}$,
∴g′(x)=$\frac{f(x)-xf′(x)}{{f}^{2}(x)}$,
则g′(1)=$\frac{f(1)-1×f′(1)}{{f}^{2}(1)}=\frac{3-1×2}{{3}^{2}}=\frac{1}{9}$.
故选:C.

点评 本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.直线l过点(1,2),且与直线x+2y=0垂直,则直线l的方程为2x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知各项均为正数的等比数列{an},a2=5,a8=10,则a5=(  )
A.$5\sqrt{2}$B.7C.6D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下2×2列联表:
读营养说明不读营养说明合计
16420
81220
合计241640
(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为“性别与是否读营养说明之间有关系”?
(2)若采用分层抽样的方法从读营养说明的学生中随机抽取3人,则男生和女生抽取的人数分别是多少?
(3)在(2)的条件下,从中随机抽取2人,求恰有一男一女的概率.(n=a+b+c+d)参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=xex在点(1,1)处的瞬时变化率等于(  )
A.2eB.eC.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.(x-y)9的展开式中,系数最大项的系数是(  )
A.84B.126C.210D.252

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=eaxlnx(a>0,e为自然对数的底数)
(1)若f(x)在定义域内单调递增,求实数a的取值范围;
(2)令g(x)=$\frac{f′(x)}{{e}^{ax}}$,若相异实数x1,x2满足g(x1)=f(x2),证明:x1+x2>$\frac{2}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)若a,b,c,x,y,z>0,求证:(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2
(2)若a,b,c>0,且a+b+c=1,求证:$\sqrt{a}$+$\sqrt{2b}$+$\sqrt{3c}$≤$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知递减等差数列{an}满足:a1=2,a2•a3=40.
(Ⅰ)求数列{an}的通项公式及前n项和Sn
(Ⅱ)若递减等比数列{bn}满足:b2=a2,b4=a4,求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案